Enzymatic synthesis of Vaccinium blue using vaccinoside as a bifunctional precursor.

Food Chem

Suzhou Institute of Chinese Materia Medica, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; School of Biology and Food Engineering, Changshu Institute of Technology, Nantong 215123, China. Electronic address:

Published: May 2024

Since Tang dynasty in China, the fresh leaves of Vaccinium bracteatum (VBL) have been applied as natural pigment to produce black rice. However, detailed information on its biosynthetic mechanism still remained unclear. Following rice dyeing capacity assay, vaccinoside, one of iridoid glycosides, was identified as the key active compound. Increased methodical research demonstrated vaccinoside as a distinct bifunctional precursor, which could be catalyzed by polyphenol oxidase or β-glucosidase independently, followed by reaction with 15 amino acids to give blue pigments (VBPs; λmax 581-590 nm) of different hues. Two synthetic pathways of VBPs were proposed, using multiple techniques such as HPLC, HPSEC, UV-Vis spectrum and colorimeter as analysis tools. Black rice was interpreted to be prepared by cooking, using vaccinoside, intrinsic enzymes from fresh VBL and rice protein in combination. These findings promote the understanding of VBP formation mechanisms and provide an efficient method of producing novel Vaccinium blue pigments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.138049DOI Listing

Publication Analysis

Top Keywords

vaccinium blue
8
bifunctional precursor
8
black rice
8
blue pigments
8
enzymatic synthesis
4
synthesis vaccinium
4
vaccinoside
4
blue vaccinoside
4
vaccinoside bifunctional
4
precursor tang
4

Similar Publications

This study introduced a novel approach to 3D image segmentation utilizing a neural network framework applied to 2D depth map imagery, with Z axis values visualized through color gradation. This research involved comprehensive data collection from mechanically harvested wild blueberries to populate 3D and red-green-blue (RGB) images of filled totes through time-of-flight and RGB cameras, respectively. Advanced neural network models from the YOLOv8 and Detectron2 frameworks were assessed for their segmentation capabilities.

View Article and Find Full Text PDF

European blueberries ( L.) can be found across the Northern Hemisphere, particularly in cool, temperate forests. These shrubs produce dark blue berries that are rich in vitamins, antioxidants, and anthocyanins making them valuable for both human consumption and food supplements.

View Article and Find Full Text PDF
Article Synopsis
  • Blueberries have a variety of anthocyanins that give them their blue color, and some types can produce more stable acylated anthocyanins, making them a focus for breeding.
  • This study focused on a specific gene, VcAAT1a, which was found to effectively produce different acylated anthocyanins in various plant systems.
  • The research identified that VcAAT1a only uses acetyl CoA as an acyl donor, and its promoter is activated by certain transcription factors, providing insight into how anthocyanin production is regulated in blueberries.
View Article and Find Full Text PDF

Highbush blueberry (Vaccinium corymbosum) is an important fruit crop for pick-your-own agritourism farms in the Midwest. Declining or diseased plants are a major concern for pick-your-own farms, as consumers prioritize healthy plants and organic practices (Norby and Retallick 2012). In August 2023, leaf spot and dieback symptoms were observed sporadically on the current year's growth throughout an organic berry agritourism farm in Eastern Iowa.

View Article and Find Full Text PDF

Fruit ripening is a highly coordinated process involving molecular and biochemical changes that collectively determine fruit quality. The underlying metabolic programs and their transitions leading to fruit ripening remain largely under-characterized in blueberry (Vaccinium sp.), which exhibits atypical climacteric behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!