Stretch-injury promotes microglia activation with enhanced phagocytic and synaptic stripping activities.

Biomaterials

Mechanobiology & Biomaterials Group, CIRMAP, Research Institute for Biosciences, University of Mons, B-7000, Mons, Belgium. Electronic address:

Published: March 2024

Microglial cells, as the primary defense line in the central nervous system, play a crucial role in responding to various mechanical signals that can trigger their activation. Despite extensive research on the impact of chemical signaling on brain cells, the understanding of mechanical signaling in microglia remains limited. To bridge this gap, we subjected microglial cells to a singular mechanical stretch and compared their responses with those induced by lipopolysaccharide treatment, a well-established chemical activator. Here we show that stretching microglial cells leads to their activation, highlighting their significant mechanosensitivity. Stretched microglial cells exhibited distinct features, including elevated levels of Iba1 protein, a denser actin cytoskeleton, and increased persistence in migration. Unlike LPS-treated microglial cells, the secretory profile of chemokines and cytokines remained largely unchanged in response to stretching, except for TNF-α. Intriguingly, a single stretch injury resulted in more compacted chromatin and DNA damage, suggesting potential long-term genomic instabilities in stretched microglia. Using compartmentalized microfluidic chambers with neuronal networks, we observed that stretched microglial cells exhibited enhanced phagocytic and synaptic stripping activities. These findings collectively suggest that stretching events can unlock the immune potential of microglial cells, contributing to the maintenance of brain tissue homeostasis following mechanical injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2023.122426DOI Listing

Publication Analysis

Top Keywords

microglial cells
28
enhanced phagocytic
8
phagocytic synaptic
8
synaptic stripping
8
stripping activities
8
cells
8
stretched microglial
8
cells exhibited
8
microglial
7
stretch-injury promotes
4

Similar Publications

Background: Ferroptosis and immune responses are critical pathological events in spinal cord injury (SCI), whereas relative molecular and cellular mechanisms remain unclear.

Methods: Micro-array datasets (GSE45006, GSE69334), RNA sequencing (RNA-seq) dataset (GSE151371), spatial transcriptome datasets (GSE214349, GSE184369), and single cell RNA sequencing (scRNA-seq) datasets (GSE162610, GSE226286) were available from the Gene Expression Omnibus (GEO) database. Through weighted gene co-expression network analysis and differential expression analysis in GSE45006, we identified differentially expressed time- and immune-related genes (DETIRGs) associated with chronic SCI and differentially expressed ferroptosis- and immune-related genes (DEFIRGs), which were validated in GSE151371.

View Article and Find Full Text PDF

Remote photobiomodulation ameliorates behavioral and neuropathological outcomes in a rat model of repeated closed head injury.

Transl Psychiatry

January 2025

Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.

Repeated closed-head injuries (rCHI) from activities like contact sports, falls, military combat, and traffic accidents pose a serious risk due to their cumulative impact on the brain. Often, rCHI is not diagnosed until symptoms of irreversible brain damage appear, highlighting the need for preventive measures. This study assessed the prophylactic efficacy of remote photobiomodulation (PBM) targeted at the lungs against rCHI-induced brain injury and associated behavioral deficits.

View Article and Find Full Text PDF

Aging is a critical factor in the onset and progression of neurodegenerative diseases and cognitive decline, with aging-related neuroinflammation and cellular senescence being major contributors. In the aging brain, the cerebral vascular endothelium overexpresses vascular cell adhesion molecule 1 (VCAM1), activating microglia and leading to neuroinflammation and cognitive impairment. Quercetin, a natural neuroprotective agent widely used for treating neurodegenerative diseases, their therapeutic efficacy, however, is limited by its poor water solubility and inability to penetrate the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Baicalin ameliorates neuroinflammation by targeting TLR4/MD2 complex on microglia via PI3K/AKT/NF-κB signaling pathway.

Neuropharmacology

January 2025

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China. Electronic address:

This study aims to elucidate the target and mechanism of baicalin, a clinically utilized drug, in the treatment of neuroinflammatory diseases. Neuroinflammation, characterized by the activation of glial cells and the release of various pro-inflammatory cytokines, plays a critical role in the pathogenesis of various diseases, including spinal cord injury (SCI). The remission of such diseases is significantly dependent on the improvement of inflammatory microenvironment.

View Article and Find Full Text PDF

DANCR Knockdown Alleviates Neuroinflammation and Functional Recovery after Spinal Cord Injury via Regulating the ACTN4 / STAT3 Axis.

Arch Biochem Biophys

January 2025

Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China. Electronic address:

Polarization of microglia following spinal cord injury (SCI) is a pivotal pathological process of secondary injury. Although differentiation antagonistic nonprotein coding RNA (DANCR) has been implicated in immune and inflammatory responses across various diseases, its role in SCI still unclear. This research aimed to clarify the underlying mechanisms of DANCR in SCI recovery by investigating its expression pattern in microglia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!