In this article, five kinds of 1,3-diketones and their chelates with different molecular structures were prepared, and their tribological properties were tested. The experimental results show that the running-in time and friction coefficient of the friction pairs lubricated by 1,3-diketones containing a benzene ring increased with the increase of the carbon chain length. In addition, only the friction pair lubricated by 1-(4-ethylphenyl)-butane-1,3-dione (0201) and 1-(4-ethylphenyl)-nonane-1,3-dione (0206) could achieve stable superlubricity. When the benzene ring was replaced with a carbon six-membered ring, it was found that although the friction pair lubricated by this lubricant could achieve superlubricity, the wear of the friction pair was severe, and obvious abrasive wear occurred. In addition, the lubricants prepared by mixing 1,3-diketones and the corresponding chelates in a ratio of 4:6 had greatly improved lubricating properties compared to 1,3-diketones. Through X-ray photoelectron spectroscopy (XPS) analysis of the surface of the friction pair after the test and Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) analyses of 1,3-diketones before and after the experiment, we found that the necessary conditions for the friction pair lubricated by 1,3-diketone to achieve superlubricity were formation of tribochemical adsorption films and the presence of chelates in solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c02988 | DOI Listing |
Sci Rep
January 2025
Department of CSE, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
The composition of the metal-polymer friction pair is carefully considered for interacting with water and hydrogen, ensuring the metals electrode process potential remains below waters in a neutral medium. Simultaneously, adherence to defined chemical composition ratios for the metal-polymer materials is crucial. This analysis is conducted under conditions of thermal stabilization, characterized by a minimal temperature gradient across the rim thickness within an equivalent thermal field.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Marine Engineering, Gdynia Maritime University, 81-225 Gdynia, Poland.
Composites are increasingly being modified with various types of fillers and nanofillers. These materials have attracted much attention due to the improvement in their properties compared to traditional composite materials. In the case of advanced technologies, adding additives to the matrix has created a number of possibilities for use in many industries, from electronics to mechanics.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, China.
To investigate the effect of the initial surface roughness on the performance at the initial stage of the current-carrying friction of an elastic friction pair, experiments were conducted using a self-made current-carrying friction and wear tester. The results indicate that under the experimental conditions, the lifespan of the friction pair decreases as the surface roughness and load decrease. When the surface roughness is Ra 0.
View Article and Find Full Text PDFBiomolecules
January 2025
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
The interaction between molecular targeted therapy drugs and target proteins is crucial with regard to the drugs' anti-tumor effects. Electric fields can change the structure of proteins, which determines the interaction between drugs and proteins. However, the regulation of the interaction between drugs and target proteins and the anti-tumor effects of electric fields have not been studied thoroughly.
View Article and Find Full Text PDFSensors (Basel)
December 2024
State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China.
To avoid wear and tear of the slip ring due to electrical corrosion, the slip ring needs to undergo the running-in process under atmospheric conditions without current after assembly. To address the urgent demand for long-service capability space conductive slip rings in the aerospace field, the running-in behavior and failure mechanism between the AgCuNi alloy and Au-electroplated layer are investigated using a ball-on-disc tribometer in this paper. The results show that the transfer film composed of Au plays an important role in modifying the friction during the sliding process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!