Tissue-resident CD8 T cells (T) continuously scan peptide-MHC (pMHC) complexes in their organ of residence to intercept microbial invaders. Recent data showed that T lodged in exocrine glands scan tissue in the absence of any chemoattractant or adhesion receptor signaling, thus bypassing the requirement for canonical migration-promoting factors. The signals eliciting this noncanonical motility and its relevance for organ surveillance have remained unknown. Using mouse models of viral infections, we report that exocrine gland T autonomously generated front-to-back F-actin flow for locomotion, accompanied by high cortical actomyosin contractility, and leading-edge bleb formation. The distinctive mode of exocrine gland T locomotion was triggered by sensing physical confinement and was closely correlated with nuclear deformation, which acts as a mechanosensor via an arachidonic acid and Ca signaling pathway. By contrast, naïve CD8 T cells or T surveilling microbe-exposed epithelial barriers did not show mechanosensing capacity. Inhibition of nuclear mechanosensing disrupted exocrine gland T scanning and impaired their ability to intercept target cells. These findings indicate that confinement is sufficient to elicit autonomous T cell surveillance in glands with restricted chemokine expression and constitutes a scanning strategy that complements chemosensing-dependent migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/sciimmunol.add5724 | DOI Listing |
J Neuroinflammation
December 2024
Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
The immune system has garnered attention due to its association with disease progression in amyotrophic lateral sclerosis (ALS). However, the role of peripheral immune cells in this context remains controversial. Here, we conducted single-cell RNA-sequencing of peripheral blood mononuclear cells to comprehensively profile immune cells concerning the rate of disease progression in patients with ALS.
View Article and Find Full Text PDFLab Anim Res
December 2024
Department of Experimental Animal Research, Biomedical Research Institute, Seoul National Univ. Hospital, Seoul, Korea.
Background: Genetically immunodeficient mice lacking Il2rg and Rag2 genes have been widely utilized in the field of biomedical research. However, immunodeficient rats, which offer the advantage of larger size, have not been as extensively used to date. Recently, Severe Combined Immunodeficiency (SCID) rats were generated using CRISPR/Cas9 system, targeting Il2rg and Rag2 in National BioResource Project in Japan.
View Article and Find Full Text PDFImmun Ageing
December 2024
Université Paris Cité, INSERM, PARCC, Paris, France.
Background: Immune ageing complicates cancer treatment in older individuals. While immunotherapy targeting the PD-1/PD-L1 pathway can reinvigorate T cells, these cells tend to become senescent with age. This study investigates different CD8 T cell subsets usually associated with senescence, in cancer patients over 70 years old who are undergoing anti-PD-1/PD-L1 immunotherapy, and examines the relationship between these senescent cells and prior chemotherapy exposure.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Gastrointestinal Surgery, School of Medicine, RenJi Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Pudong New Area, Shanghai, 200025, China.
Background: Recent studies have highlighted the distinct ratio of PD-1 + Treg/PD-1 + CD8 for prognosis prediction. However, it remains unclear about the association of this ratio and tertiary lymphoid structures (TLS) with prognosis and response to neoadjuvant or conversion therapy in advanced gastric cancer.
Methods: Firstly, fresh postoperative samples from 68 gastric cancer patients in Renji Hospital were collected.
Sci Rep
December 2024
National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China.
Glioma is the most common malignant brain tumor. Previous studies have reported that calnexin (CANX) is significantly up-regulated in a variety of malignant tumors, including glioma, but its biological function and mechanism in glioma is still unclear. In this study, differentially expressed proteins in 3 primary glioblastoma multiforme (GBM) tissues and 3 paracancer tissues were identified by liquid chromatography-tandem mass spectrometry-based proteomic and bioinformatic analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!