ACBD3 is a protein localised to the Golgi apparatus and recruits other proteins, such as PI4KIIIβ, to the Golgi. However, the mechanism through which ACBD3 itself is recruited to the Golgi is poorly understood. This study demonstrates there are two mechanisms for ACBD3 recruitment to the Golgi. First, we identified that an MWT motif in the unique region upstream of the GOLD domain in ACBD3 is essential for Golgi localization. Second, we use unbiased proteomics to demonstrate that ACBD3 interacts with SCFD1, a Sec1/Munc-18 (SM) protein, and a SNARE protein, SEC22B. CRISPR-KO of SCFD1 causes ACBD3 to become cytosolic. We also found that ACBD3 is redundantly recruited to the Golgi apparatus by two golgins: golgin-45 and giantin, which bind to ACBD3 through interaction with the MWT motif. Taken together, our results suggest that ACBD3 is recruited to the Golgi in a two-step sequential process, with the SCFD1-mediated interaction occurring upstream of the interaction with the golgins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615549 | PMC |
http://dx.doi.org/10.1091/mbc.E23-09-0376 | DOI Listing |
Sci Adv
January 2025
Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.
Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
Endosomal recycling is a branch of intracellular membrane trafficking that retrieves endocytosed cargo proteins from early and late endosomes to prevent their degradation in lysosomes. A key player in endosomal recycling is the Commander complex, a 16-subunit protein assembly that cooperates with other endosomal factors to recruit cargo proteins and facilitate the formation of tubulo-vesicular carriers. While the crucial role of Commander in endosomal recycling is well established, its molecular mechanism remains poorly understood.
View Article and Find Full Text PDFZool Res
January 2025
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
NLRP3 inflammasome activation is pivotal for cytokine secretion and pyroptosis in response to diverse stimuli, playing a crucial role in innate immunity. While extensively studied in mammals, the regulatory mechanisms governing NLRP3 activation in non-mammalian vertebrates remain largely unexplored. Teleosts, as basal vertebrates, represent an ideal model for exploring the evolutionary trajectory of inflammasome regulation.
View Article and Find Full Text PDFClin Biochem
January 2025
Dipartimento di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L. Latina, 04100 Latina, Italy.
Background: Novel circulating markers for the non-invasive staging of chronic liver disease (CLD) are in high demand. Although underutilized, extracellular matrix (ECM) components offer significant diagnostic potential. This study evaluates ECM-related markers in hepatitis C virus (HCV)-positive patients across varying fibrosis stages.
View Article and Find Full Text PDFJ Cell Sci
January 2025
Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Québec H7V 1B7, Canada.
Rab7A has a key role in regulating membrane trafficking at late endosomes. By interacting with several different effectors, this small GTPase controls late endosome mobility, orchestrates fusion events between late endosomes and lysosomes, and participates in the formation of and regulates the fusion between autophagosomes and lysosomes. Rab7A is also responsible for the spatiotemporal recruitment of retromer, which is required for the endosome-to-trans-Golgi network retrieval of cargo receptors such as sortilin (SORT1) and CI-MPR (also known as IGF2R).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!