Absorption of the long-wave infrared from human beings and the surroundings is a key step to infrared imaging and sensing. Here we demonstrate a flexible and transparent broadband infrared absorber using the photoresist-assisted metamaterials fabricated by one-step laser direct writing. The photoresist is patterned by the laser as an insulator layer as well as a mask to build the complementary bilayer metamaterials without lithography. The average absorptivity is 94.5% from 8 to 14 μm in experiment due to the broadband destructive interference of the reflected beam explained by the Fabry-Perot cavity model. The proposed absorber is applicable to various substrates with additional merits of polarization insensitivity and large angle tolerance, which offers a promising solution for thermal detection and management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.509760 | DOI Listing |
Npj Nanophoton
January 2025
Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany.
We introduce a novel material for integrated photonics and investigate aluminum gallium nitride (AlGaN) on aluminum nitride (AlN) templates as a platform for developing reconfigurable and on-chip nonlinear optical devices. AlGaN combines compatibility with standard photonic fabrication technologies and high electro-optic modulation capabilities with low loss over a broad spectral range, from UVC to long-wave infrared, making it a viable material for complex photonic applications. In this work, we design and grow AlGaN/AlN heterostructures and integrate several photonic components.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.
Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.
Long-wave infrared (LWIR) spectral imaging plays a critical role in various applications such as gas monitoring, mineral exploration, and fire detection. Recent advancements in computational spectral imaging, powered by advanced algorithms, have enabled the acquisition of high-quality spectral images in real time, such as with the Uncooled Snapshot Infrared Spectrometer (USIRS). However, the USIRS system faces challenges, particularly a low spectral resolution and large amount of data noise, which can degrade the image quality.
View Article and Find Full Text PDFSci Adv
December 2024
Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA.
Nanophotonics
March 2024
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China.
Radiative cooling in smart windows using VO - a dynamic thermal management material, is of potential interest for enhancing energy savings in buildings due to its both solar and emittance tuneability in response to changing temperatures. However, studies related to the effects of VO thin film microstructure in a multilayer system on emissivity regulation are currently lacking. The present study addresses the thermochromic and emissivity performance of VO/ZnSe/ITO/Glass Fabry-Perot (F-P) cavity thin film system, by manipulating the porosity in VO thin film.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!