The intestinal epithelium is composed of two distinct structures, namely, the villi and crypts. The base of the crypts contains intestinal stem cells (ISCs), which support the high regenerative capacity of the intestinal epithelium. With the establishment of the three-dimensional (3D) organoid culture method, the cellular and molecular mechanisms of differentiation, proliferation, and maintenance of ISCs have been widely analyzed. However, the sphere-like morphology of the 3D organoids prevents access to the apical side of the epithelium. To overcome this limitation, two-dimensional (2D) monolayer cultures derived from 3D organoids have been attempted; however, 2D culture methods for the mouse small intestine have not been well established. In this study, we developed a simple method that uses only commercially available materials, for the formation of 2D epithelial monolayers from mouse 3D small intestinal organoids. Using this method, confluent 2D epithelial monolayers were established within 4 days. This monolayer showed stable tight junction and included ISCs and differentiated intestinal cells. It also showed physiologically relevant transepithelial electrical resistance values. On the basis of these findings, this method opens a novel platform for analyzing the physiology of the intestinal epithelium, its interaction with microbes, and mechanisms of villus formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3609-1_7 | DOI Listing |
Sci Transl Med
January 2025
Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany.
Dysregulation at the intestinal epithelial barrier is a driver of inflammatory bowel disease (IBD). However, the molecular mechanisms of barrier failure are not well understood. Here, we demonstrate dysregulated mitochondrial fusion in intestinal epithelial cells (IECs) of patients with IBD and show that impaired fusion is sufficient to drive chronic intestinal inflammation.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of Gastroenterology, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, Anhui Province, China.
Inflammatory bowel disease, particularly Crohn's disease (CD), has been linked to modifications in mesenteric adipose tissue (MAT) and the phenomenon known as "creeping fat" (CrF). The presence of CrF is believed to serve as a predictor for early clinical recurrence following surgical intervention in patients with CD. Notably, the incorporation of the mesentery during ileocolic resection for CD has been correlated with a decrease in surgical recurrence, indicating the significant role of MAT in the pathogenesis of CD.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of Surgery, University Hospital of Larissa, Larissa 41334, Greece.
Autoimmune enteropathy (AIE) is a rare immune mediated disorder primarily affecting children, characterized by chronic diarrhea, malabsorption, vomiting, weight loss and villous atrophy. It has also been observed in adults presenting diagnostic and treatment challenges due to its overlap with other gastrointestinal disorders such as celiac disease. Initial diagnostic criteria for AIE include small bowel villous atrophy, lack of response to dietary restrictions, presence of anti-enterocyte antibodies, and predisposition to autoimmunity without severe immunodeficiency.
View Article and Find Full Text PDFVet Med (Praha)
November 2024
Equine Clinic, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic.
This case report describes the poisoning of two mares from the same paddock with (Black locust) bark. The poisoning manifested itself by the sudden onset of weakness and fever with transient improvement after the administration of non-steroidal anti-inflammatory drugs and fluids. After the initial stabilisation, the mares were left unattended overnight.
View Article and Find Full Text PDFInt J Pharm
January 2025
Drug Delivery and Disposition, KU Leuven, Gasthuisberg ON2, Herestraat 49 - box 921, 3000 Leuven, Belgium. Electronic address:
The widespread prevalence of colorectal cancer and its high mortality rate emphasize the urgent need for more effective therapies. When developing new drug products, a key aspect is ensuring that sufficiently high concentrations of the active drug are reached at the site of action. Drug transporters and drug-metabolizing enzymes can significantly influence the absorption and local accumulation of drugs in intestinal tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!