A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A conditional inference tree model for predicting cancer risk of non-mass lesions detected on breast ultrasound. | LitMetric

Objectives: To generate and validate a prediction model based on imaging features for cancer risk of non-mass lesions (NMLs) detected on breast ultrasound (US).

Methods: In this single-center study, consecutive women with 503 NMLs detected on breast US between 2012 and 2019 were retrospectively identified. The lesions were randomly assigned to the training or testing dataset with a 70/30 split. Age, symptoms, lesion size, and US features were collected. Multivariate analyses were employed to identify risk factors associated with malignancy. The predictive model was developed by using conditional inference trees (CTREE).

Results: There were 498 patients (50.9 ± 13.29 years; range, 22-88 years) with 503 NMLs with histopathologic results or > 2-year follow-up, including 224 (44.5%) benign and 279 (55.5%) malignant lesions. At multivariate analysis, age (odds ratio (OR) = 1.08, 95% confidence interval (CI), 1.06-1.11, p < 0.001), NMLs with focal mass effect (OR = 3.03, 95% CI, 1.59-5.81, p = 0.001), indistinct glandular-fat interface (GFI) (OR = 4.23, 95% CI, 2.31-7.73, p < 0.001), geographic (OR = 3.47, 95% CI, 1.20-10.8, p = 0.022) and mottled (OR = 3.67, 95% CI, 1.32-10.21, p = 0.013) patterns, and calcifications (OR = 2.15, 95% CI, 1.16-4.01, p = 0.016) were associated with malignancy. The GFI status, architectural patterns, general morphology, and calcifications were consistently identified as the strongest US predictors of malignancy using CTREE analysis. Based on these factors, individuals were stratified into six risk groups. The predictive model showed an area under the curve of 0.797 in the testing dataset.

Conclusion: The CTREE model efficiently aids in interpreting and managing ultrasound-detected breast NMLs, overcoming BI-RADS limitations by refining cancer risk stratification.

Clinical Relevance Statement: The CTREE model allows for the reclassification of BI-RADS categories into subgroups with varying malignancy probabilities, thus providing a valuable enhancement to the BI-RADS assessment for the diagnosis of ultrasound-detected NMLs, with the potential to minimize unnecessary biopsies.

Key Points: • The indistinct glandular-fat interface (GFI) status, NML with focal mass effect, geographic or mottled patterns, and calcifications are the strongest imaging predictors of malignant non-mass lesions (NMLs) detected on breast US. • A practical system has been created to categorize NMLs found in breast US; each classification is associated with a degree of diagnostic certainty. • The model may contribute to patient stratification by determining the relative likelihood of malignancy and thus support clinical decision-making and evidence-based management.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-023-10504-7DOI Listing

Publication Analysis

Top Keywords

detected breast
12
conditional inference
8
cancer risk
8
risk non-mass
8
non-mass lesions
8
breast ultrasound
8
nmls detected
8
503 nmls
8
inference tree
4
tree model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!