A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Origin of Stability and Activity Enhancements in Pt-based Oxygen Reduction Reaction Catalysts via Defect-Mediated Dopant Adsorption. | LitMetric

Platinum alloys are highly efficient electrocatalysts for the oxygen reduction reaction (ORR) in acidic conditions. However, these alloys are susceptible to metal loss through leaching and degradation, leading to reduced catalyst stability and activity. Recently, it has been shown that doping with oxophilic elements can significantly alleviate these problems, with a prominent example being Mo-doped Pt alloys. Here, to achieve atomic scale understanding of the exceptional activity and stability of these alloys, we present a detailed density functional theory description of the dopants' structures and impact on electrocatalyst properties. Beginning with the Mo/Pt system, we demonstrate that Mo can be stabilized in the form of low-dimensional oxyhydroxide moieties on Pt defects. The resulting structures enhance stability and activity via distinct physical processes, with the Mo moieties both directly inhibiting Pt dissolution at defects and indirectly enhancing ORR activity by generation of strain fields on surrounding Pt terraces. We then generalize these analyses to other metal dopant elements, and we demonstrate that similar low-dimensional oxyhydroxide structures control the electrocatalytic properties through an intricate interplay of the structures' acid stability, intrinsic activity for the ORR, and ability to induce ORR-promoting strain fields on Pt.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202312747DOI Listing

Publication Analysis

Top Keywords

stability activity
12
oxygen reduction
8
reduction reaction
8
low-dimensional oxyhydroxide
8
strain fields
8
activity
6
origin stability
4
activity enhancements
4
enhancements pt-based
4
pt-based oxygen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!