We reported a molecular dynamics (MD) simulation study of an advancing pure Al(100)/melt interface that encounters a foreign immiscible liquid Pb cylindrical nano-inclusion. When the advancing interface approaches the inclusion, the interface may engulf, push to an extent and then engulf or push the nano-inclusion away from the solidifying phase depending on the velocity of the interface. Here, we investigated cylindrical liquid Pb nano-inclusion pushing or engulfment by a growing crystal Al that strongly depends on the velocity of the crystal/melt interface, and a critical velocity (vc) is deduced. If the velocity of the interface is less than vc, then the inclusion is pushed and engulfed otherwise. The relationship between vc and the radius of the nano-inclusion is expressed using a power function that agrees well with the previous studies. For velocity above the vc, the crystal/melt interface plays a vital role; it hinders the matrix atoms from setting below the cylindrical nano-inclusion due to insufficient mass transfer below the inclusion, resulting in the engulfment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745387PMC
http://dx.doi.org/10.3390/nano13243164DOI Listing

Publication Analysis

Top Keywords

crystal/melt interface
12
cylindrical liquid
8
liquid nano-inclusion
8
nano-inclusion advancing
8
interface
8
simulation study
8
cylindrical nano-inclusion
8
engulf push
8
velocity interface
8
velocity crystal/melt
8

Similar Publications

By employing non-equilibrium molecular dynamics (NEMD) simulations and time-dependent Ginzburg-Landau (TDGL) theory for solidification kinetics [Cryst. Growth Des. 20, 7862 (2020)], we predict the kinetic coefficients of FCC(100) crystal-melt interface (CMI) of soft-spheres modeled with an inverse-sixth-power repulsive potential.

View Article and Find Full Text PDF

We reported a molecular dynamics (MD) simulation study of an advancing pure Al(100)/melt interface that encounters a foreign immiscible liquid Pb cylindrical nano-inclusion. When the advancing interface approaches the inclusion, the interface may engulf, push to an extent and then engulf or push the nano-inclusion away from the solidifying phase depending on the velocity of the interface. Here, we investigated cylindrical liquid Pb nano-inclusion pushing or engulfment by a growing crystal Al that strongly depends on the velocity of the crystal/melt interface, and a critical velocity (vc) is deduced.

View Article and Find Full Text PDF

Atomistic characterization of the SiO high-density liquid/low-density liquid interface.

J Chem Phys

October 2022

State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.

The equilibrium silica liquid-liquid interface between the high-density liquid (HDL) phase and the low-density liquid (LDL) phase is examined using molecular-dynamics simulation. The structure, thermodynamics, and dynamics within the interfacial region are characterized in detail and compared with previous studies on the liquid-liquid phase transition (LLPT) in bulk silica, as well as traditional crystal-melt interfaces. We find that the silica HDL-LDL interface exhibits a spatial fragile-to-strong transition across the interface.

View Article and Find Full Text PDF

Local collective dynamics at equilibrium BCC crystal-melt interfaces.

J Chem Phys

August 2022

State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.

We present a classical molecular-dynamics study of the collective dynamical properties of the coexisting liquid phase at equilibrium body-centered cubic (BCC) Fe crystal-melt interfaces. For the three interfacial orientations (100), (110), and (111), the collective dynamics are characterized through the calculation of the intermediate scattering functions, dynamical structure factors, and density relaxation times in a sequential local region of interest. An anisotropic speedup of the collective dynamics in all three BCC crystal-melt interfacial orientations is observed.

View Article and Find Full Text PDF

Understanding the kinetic anisotropy of the soft-sphere bcc crystal-melt interfaces.

J Phys Condens Matter

April 2022

State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China.

By employing the non-equilibrium molecular dynamics (MD) simulations and the time-dependent Ginzburg-Landau (TDGL) theory for the solidification kinetics, we predict the kinetic coefficients for the bcc(100), (110), and (111) CMIs of the soft-spheres, which are modeled with the inverse-power repulsive potential, and compare with the previous reported data of the bcc Fe system. We confirm a universal-like behavior of the spatial integrations of the (density wave amplitudes) Ginzburg-Landau order parameter square-gradient for the bcc CMI systems. The TDGL predictions of the kinetic anisotropies for bcc soft-sphere and bcc Fe CMI systems are identical; both agree well with the MD measurement for the soft-sphere system but differ strongly with the MD measurement for the Fe system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!