Water electrolysis is a highly efficient route to produce ideally clean H fuel with excellent energy conversion efficiency and high gravimetric energy density, without producing carbon traces, unlike steam methane reforming, and it resolves the issues of environmental contamination via replacing the conventional fossil fuel. Particular importance lies in the advancement of highly effective non-precious catalysts for the oxygen evolution reaction (OER). The electrocatalytic activity of an active catalyst mainly depends on the material conductivity, accessible catalytically active sites, and intrinsic OER reaction kinetics, which can be tuned via introducing N heteroatoms in the catalyst structure. Herein, the efficacious nitrogenation of CuS was accomplished, synthesized using a hydrothermal procedure, and characterized for its electrocatalytic activity towards OER. The nitrogen-doped CuO@CuS (N,CuO@CuS) electrocatalyst exhibited superior OER activity compared to pristine CuS (268 and 602 mV), achieving a low overpotential of 240 and 392 mV at a current density of 10 and 100 mA/cm, respectively, ascribed to the favorable electronic structural modification triggered by nitrogen incorporation. The N,CuO@CuS also exhibits excellent endurance under varied current rates and a static potential response over 25 h with stability measured at 10 and 100 mA/cm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745488 | PMC |
http://dx.doi.org/10.3390/nano13243160 | DOI Listing |
Nanomaterials (Basel)
December 2024
Division of System Semiconductor, Dongguk University, Seoul 04620, Republic of Korea.
Using electrocatalytic water reduction to produce hydrogen fuel offers significant potential for clean energy, yet its large-scale adoption depends on developing cost-effective, non-precious, and efficient catalysts to replace expensive Pt-based state-of-the-art HER catalysts. The catalytic HER performance of an active catalyst largely depends on the available catalytic active sites, conductivity, and intrinsic electrochemical kinetics, all of which can be altered by incorporating a heteroatom into the active catalyst structure. Herein, we synthesized a unique nitrogen-doped CuO@CuS (NCOS) core-shell-structured catalyst through a facile hydrothermal process followed by an efficacious nitrogenation process, and its electrochemical performance for the HER was systematically analyzed.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2023
Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea.
Water electrolysis is a highly efficient route to produce ideally clean H fuel with excellent energy conversion efficiency and high gravimetric energy density, without producing carbon traces, unlike steam methane reforming, and it resolves the issues of environmental contamination via replacing the conventional fossil fuel. Particular importance lies in the advancement of highly effective non-precious catalysts for the oxygen evolution reaction (OER). The electrocatalytic activity of an active catalyst mainly depends on the material conductivity, accessible catalytically active sites, and intrinsic OER reaction kinetics, which can be tuned via introducing N heteroatoms in the catalyst structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!