A Strategy for Tuning Electron-Phonon Coupling and Carrier Cooling in Lead Halide Perovskite Nanocrystals.

Nanomaterials (Basel)

Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

Published: December 2023

Perovskites have been recognized as a class of promising materials for optoelectronic devices. We intentionally include excessive Cs cations in precursors in the synthesis of perovskite CsPbBr nanocrystals and investigate how the Cs cations influence the lattice strain in these perovskite nanocrystals. Upon light illumination, the lattice strain due to the addition of alkali metal Cs cations can be compensated by light-induced lattice expansion. When the Cs cation in precursors is about 10% excessive, the electron-phonon coupling strength can be reduced by about 70%, and the carrier cooling can be slowed down about 3.5 times in lead halide perovskite CsPbBr nanocrystals. This work reveals a new understanding of the role of Cs cations, which take the A-site in ABX perovskite and provide a new way to improve the performance of perovskites and their practical devices further.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745929PMC
http://dx.doi.org/10.3390/nano13243134DOI Listing

Publication Analysis

Top Keywords

electron-phonon coupling
8
carrier cooling
8
lead halide
8
halide perovskite
8
perovskite nanocrystals
8
perovskite cspbbr
8
cspbbr nanocrystals
8
lattice strain
8
perovskite
5
strategy tuning
4

Similar Publications

The phonon inverse Faraday effect describes the emergence of a dc magnetization due to circularly polarized phonons. In this work we present a microscopic formalism for the phonon inverse Faraday effect. The formalism is based on time-dependent second order perturbation theory and electron phonon coupling.

View Article and Find Full Text PDF

Phase transition and superconductivity of selenium under pressure.

Phys Chem Chem Phys

January 2025

Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.

Although a substantial amount of research has been conducted to unravel the structural configurations of selenium under pressure, the exquisite sensitivity of selenium's p-orbital electrons to this external force, leading to a plethora of structural variations, leaves several intermediary phases still shrouded in mystery. We, herein, systematically identify the structural and electronic transformations of selenium under high pressure up to 300 GPa, employing crystal structure prediction in conjunction with first-principles calculations. Our results for the transition sequence (321 → 2/ → 3̄ → 3̄) of selenium are in good agreement with experimental ones.

View Article and Find Full Text PDF

Reducing Nonradiative Recombination in Halide Perovskites through Appropriate Band Gaps and Heavy Atomic Masses.

J Phys Chem Lett

January 2025

State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Halide perovskite optoelectronic devices achieve high energy conversion efficiencies. However, their efficiency decreases significantly with an increase in temperature. This decline is likely caused by changes in nonradiative recombination and electron-phonon coupling, which remain underexplored.

View Article and Find Full Text PDF

Effects of Homogeneous Doping on Electron-Phonon Coupling in SrTiO.

Nanomaterials (Basel)

January 2025

Department of Physics and Natural Science Research Institute, University of Seoul, Seoul 02504, Republic of Korea.

Bulk n-type SrTiO (STO) has long been known to possess a superconducting ground state at an exceptionally dilute carrier density. This has raised questions about the applicability of the BCS-Eliashberg paradigm with its underlying adiabatic assumption. However, recent experimental reports have set the pairing gap to the critical temperature (Tc) ratio at the BCS value for superconductivity in Nb-doped STO, even though the adiabaticity condition the BCS pairing requires is satisfied over the entire superconducting dome only by the lowest branch of optical phonons.

View Article and Find Full Text PDF

Raman and Photoluminescence Studies of Quasiparticles in van der Waals Materials.

Nanomaterials (Basel)

January 2025

Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China.

Two-dimensional (2D) layered materials have received much attention due to the unique properties stemming from their van der Waals (vdW) interactions, quantum confinement, and many-body interactions of quasi-particles, which drive their exotic optical and electronic properties, making them critical in many applications. Here, we review our past years' findings, focusing on many-body interactions in 2D layered materials, including phonon anharmonicity, electron-phonon coupling (), exciton dynamics, and phonon anisotropy based on temperature (polarization)-dependent Raman spectroscopy and Photoluminescence (PL). Our review sheds light on the role of quasi-particles in tuning the material properties, which could help optimize 2D materials for future applications in electronic and optoelectronic devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!