A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Luminescence in Anion-Deficient Hafnia Nanotubes. | LitMetric

Hafnia-based nanostructures and other high-k dielectrics are promising wide-gap materials for developing new opto- and nanoelectronic devices. They possess a unique combination of physical and chemical properties, such as insensitivity to electrical and optical degradation, radiation damage stability, a high specific surface area, and an increased concentration of the appropriate active electron-hole centers. The present paper aims to investigate the structural, optical, and luminescent properties of anodized non-stoichiometric HfO nanotubes. As-grown amorphous hafnia nanotubes and nanotubes annealed at 700 °C with a monoclinic crystal lattice served as samples. It has been shown that the bandgap for direct allowed transitions amounts to 5.65 ± 0.05 eV for amorphous and 5.51 ± 0.05 eV for monoclinic nanotubes. For the first time, we have studied the features of intrinsic cathodoluminescence and photoluminescence in the obtained nanotubular HfO structures with an atomic deficiency in the anion sublattice at temperatures of 10 and 300 K. A broad emission band with a maximum of 2.3-2.4 eV has been revealed. We have also conducted an analysis of the kinetic dependencies of the observed photoluminescence for synthesized HfO samples in the millisecond range at room temperature. It showed that there are several types of optically active capture and emission centers based on vacancy states in the O and O positions with different coordination numbers and a varied number of localized charge carriers (V, V, and V). The uncovered regularities can be used to optimize the functional characteristics of developed-surface luminescent media based on nanotubular and nanoporous modifications of hafnia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745887PMC
http://dx.doi.org/10.3390/nano13243109DOI Listing

Publication Analysis

Top Keywords

hafnia nanotubes
8
nanotubes
5
luminescence anion-deficient
4
anion-deficient hafnia
4
nanotubes hafnia-based
4
hafnia-based nanostructures
4
nanostructures high-k
4
high-k dielectrics
4
dielectrics promising
4
promising wide-gap
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!