The Manufacturing Conditions for the Direct and Reproducible Formation of Electrospun PCL/Gelatine 3D Structures for Tissue Regeneration.

Nanomaterials (Basel)

Advanced Technology Institute, School of Computer Science and Electronic Engineering, University of Surrey, Guildford GU2 7XH, UK.

Published: December 2023

Electrospinning is a versatile technique for fabricating nanofibrous scaffolds for tissue engineering applications. However, the direct formation of 3D sponges through electrospinning has previously not been reproducible. We used a Taguchi experimental design approach to optimise the electrospinning parameters for forming PCL and PCL/gelatine 3D sponges. The following parameters were investigated to improve sponge formation: solution concentration, humidity, and solution conductivity. Pure PCL sponges were achievable. However, a much fluffier sponge formed by increasing the solution conductivity with gelatine. The optimal conditions for sponge formation 24 /% 80:20 PCL:gelatine on aluminium foil at ≥70% humidity, 15 cm, 22 kV and 1500 µL/h. The resulting sponge had a highly porous structure with a fibre diameter of ~1 µm. They also supported significantly higher cell viability than 2D electrospun mats, dropcast films of the same material and even the TCP positive control. Our study demonstrates that the direct formation of PCL/gelatine 3D sponges through electrospinning is feasible and promising for tissue engineering applications. The sponges have a highly porous structure and support cell viability, which are essential properties for tissue engineering scaffolds. Further studies are needed to optimise the manufacturing process and evaluate the sponges' long-term performance in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745430PMC
http://dx.doi.org/10.3390/nano13243107DOI Listing

Publication Analysis

Top Keywords

tissue engineering
12
engineering applications
8
direct formation
8
sponges electrospinning
8
pcl/gelatine sponges
8
sponge formation
8
solution conductivity
8
highly porous
8
porous structure
8
cell viability
8

Similar Publications

Novel genetic insight for psoriasis: integrative genome-wide analyses in 863 080 individuals and proteome-wide Mendelian randomization.

Brief Bioinform

November 2024

Department of Dermatology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China.

Psoriasis affects a significant proportion of the worldwide population and causes an extremely heavy psychological and physical burden. The existing therapeutic schemes have many deficiencies such as limited efficacies and various side effects. Therefore, novel ways of treating psoriasis are urgently needed.

View Article and Find Full Text PDF

Ultrasound-Activated Copper Matrix Nanosonosensitizer for Cuproptosis-Based Synergy Therapy.

ACS Appl Bio Mater

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

Cuproptosis exhibits enormous application prospects in treatment. However, cuproptosis-based therapy is impeded by the limited intracellular copper ions, the nonspecific delivery, uncontrollable release, and chelation of endogenous overproduced glutathione (GSH). In this work, an ultrasound-triggered nanosonosensitizer (p-TiO-Cu(I)) was constructed for Cu(I) delivery, on-demand release, GSH consumption, and deeper tissue response.

View Article and Find Full Text PDF

Advancements in delivery strategies and non-tissue culture regeneration systems for plant genetic transformation.

Adv Biotechnol (Singap)

September 2024

Guangdong Provincial Key Laboratory of Applied Botany, South China, Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.

Plant genetic transformation is a pivotal and essential step in modifying important agronomic traits using biotechnological tools, which primarily depend on the efficacy of transgene delivery and the plant regeneration system. Over the years, advancements in the development of delivery methods and regeneration systems have contributed to plant engineering and molecular breeding. Recent studies have demonstrated that the efficiency of plant transformation can be improved by simultaneously delivering meristem-developmental regulators, utilizing virus-mediated gene editing, and executing non-sterile in planta manipulations.

View Article and Find Full Text PDF

measurement and mapping of oxygen levels within the tissues are crucial in understanding the physiopathological processes of numerous diseases, such as cancer, diabetes, or peripheral vascular diseases. Electron paramagnetic resonance (EPR) associated with biocompatible exogenous spin probes, such as Ox071 triarylmethyl (TAM) radical, is becoming the new gold standard for oxygen mapping in preclinical settings. However, these probes do not show tissue selectivity when injected systemically, and they are not cell permeable, reporting oxygen from the extracellular compartment only.

View Article and Find Full Text PDF

Abietane diterpenoids from and their cytotoxic activities.

Nat Prod Res

January 2025

School of Pharmacy, Jiangxi Provincial Education Department Key Laboratory for the Application of Key Technologies in Drug Screening for Inflammatory Diseases and Phlegm Syndrome, Nanchang Medical College, Nanchang, China.

Two new abietane diterpenoids ( and ) and two known analogs ( and ) were isolated from the whole plants of . Their structures were determined by comprehensive spectroscopic methods (UV, IR, NMR, and HRESIMS). Moreover, all compounds were evaluated for their cytotoxic activities against U251 glioblastoma cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!