Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electroporation is used in medicine for drug and gene delivery, and as a nonthermal ablation method in tumor treatment and cardiac ablation. Electroporation involves delivering high-voltage electric pulses to target tissue; however, this can cause effects beyond the intended target tissue like nerve stimulation, muscle contractions and pain, requiring use of sedatives or anesthetics. It was previously shown that adjusting pulse parameters may mitigate some of these effects, but not how these adjustments would affect electroporation's efficacy. We investigated the effect of varying pulse parameters such as interphase and interpulse delay while keeping the duration and number of pulses constant on nerve stimulation, muscle contraction and assessing pain and electroporation efficacy, conducting experiments on human volunteers, tissue samples and cell lines in vitro. Our results show that using specific pulse parameters, particularly short high-frequency biphasic pulses with short interphase and long interpulse delays, reduces muscle contractions and pain sensations in healthy individuals. Higher stimulation thresholds were also observed in experiments on isolated swine phrenic nerves and human esophagus tissues. However, changes in the interphase and interpulse delays did not affect the cell permeability and survival, suggesting that modifying the pulse parameters could minimize adverse effects while preserving therapeutic goals in electroporation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10744272 | PMC |
http://dx.doi.org/10.3390/jcdd10120490 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!