Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study utilized the mallard's foot as the subject, examining the bone distribution via computed tomography (CT) and analyzing pertinent parameters of the tarsometatarsal bones. Additionally, gross anatomy methods were employed to elucidate the characteristics of the toes and webbing bio-structures and their material composition. Biologically, the mallard's foot comprises tarsometatarsal bones and 10 phalanges, enveloped by fascia, tendons, and skin. Vernier calipers were used to measure the bones, followed by statistical analysis to acquire structural data. Tendons, originating in proximal muscles and terminating in distal bones beneath the fascia, facilitate force transmission and systematic movement of each segment's bones. Regarding material composition, the skin layer serves both encapsulation and wrapping functions. Fat pads, located on the metatarsal side of metatarsophalangeal joints and each phalanx, function as cushioning shock absorbers. The correlation between the force applied to the tarsometatarsal bones and the webbing opening angle was explored using a texture analyzer. A simplified model describing the driving force behind the webbing opening angle was introduced. Furthermore, we designed a bionic foot, contributing a foundational reference for anti-sinking bionic foot development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10741669 | PMC |
http://dx.doi.org/10.3390/biomimetics8080592 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!