A Circular Formation Method for Biomimetic Robotic Fish Inspired by Fish Milling.

Biomimetics (Basel)

State Key Laboratory for Turbulence and Complex System, Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing 100871, China.

Published: December 2023

Circular motion phenomena, akin to fish milling, are prevalent within the animal kingdom. This paper delineates two fundamental mechanisms underlying such occurrences: forward following and circular topological communication. Leveraging these pivotal concepts, we present a multi-agent formation circular model based on a second-order integrator. This model engenders the attainment of homogeneous intelligence convergence along the circumferential trajectory. The convergence characteristics are intricately linked to the number of agents and the model parameters. Consequently, we propose positive and negative solutions for ascertaining the convergent circle property and model parameters. Furthermore, by integrating our proposed formation control methodology with a robotic fish dynamics model, we have successfully implemented simulations and experiments, demonstrating the circular formation of multiple biomimetic robotic fish. This study provides a mathematical explication for the circular motion observed in animal groups and introduces a novel approach to achieving circular formation in multiple robots inspired by biological phenomena.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10741509PMC
http://dx.doi.org/10.3390/biomimetics8080583DOI Listing

Publication Analysis

Top Keywords

circular formation
12
robotic fish
12
biomimetic robotic
8
fish milling
8
circular motion
8
model parameters
8
formation multiple
8
circular
7
fish
5
model
5

Similar Publications

Background: Atopic dermatitis (AD) is a chronic, pruritic, and inflammatory dermatosis seen in individuals with an atopic predisposition. This study aimed to examine the immunoreactivity of spexin and TRPM2 in skin samples from patients with AD and MF lesions using immunohistochemical methods.

Materials And Methods: The study utilized a total of 60 skin samples, comprising 20 from AD patients, 20 from MF patients, and 20 from control subjects.

View Article and Find Full Text PDF

The Ivermectin Related Compound Moxidectin Can Target Apicomplexan Importin α and Limit Growth of Malarial Parasites.

Cells

January 2025

Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.

Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily is crucial for eukaryotic function, with inhibitors targeting IMPα being of key interest as anti-infectious agents, including against the apicomplexan species and , causative agents of malaria and toxoplasmosis, respectively. We recently showed that the FDA-approved macrocyclic lactone ivermectin, as well as several other different small molecule inhibitors, can specifically bind to and inhibit and IMPα functions, as well as limit parasite growth. Here we focus on the FDA-approved antiparasitic moxidectin, a structural analogue of ivermectin, for its IMPα-targeting and anti-apicomplexan properties for the first time.

View Article and Find Full Text PDF

Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.

View Article and Find Full Text PDF

Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat.

Commun Biol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.

Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.

View Article and Find Full Text PDF

In recent years, a great interest has been focused on the prebiotic origin of nucleic acids and life on Earth. An attractive idea is that life was initially based on an autocatalytic and autoreplicative RNA (the RNA-world). RNA duplexes are right-handed helical chains with antiparallel orientation, but the rationale for these features is not yet known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!