High-strength composite hydrogels based on collagen or chitosan-genipin were obtained via mixing using highly porous polylactide (PLA) microparticles with diameters of 50-75 µm and porosity values of over 98%. The elastic modulus of hydrogels depended on the filler concentration. The modulus increased from 80 kPa to 400-600 kPa at a concentration of porous particles of 12-15 wt.% and up to 1.8 MPa at a filling of 20-25 wt.% for collagen hydrogels. The elastic modulus of the chitosan-genipin hydrogel increases from 75 kPa to 900 kPa at a fraction of particles of 20 wt.%. These elastic modulus values cover a range of strength properties from connective tissue to cartilage tissue. It is important to note that the increase in strength in this case is accompanied by a decrease in the density of the material, that is, an increase in porosity. PLA particles were loaded with C-phycocyanin and showed an advanced release profile up to 48 h. Thus, composite hydrogels mimic the structure, biomechanics and release of biomolecules in the tissues of a living organism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10741550PMC
http://dx.doi.org/10.3390/biomimetics8080565DOI Listing

Publication Analysis

Top Keywords

elastic modulus
12
porous polylactide
8
composite hydrogels
8
hydrogels
5
polylactide microparticles
4
microparticles effective
4
effective fillers
4
fillers hydrogels
4
hydrogels high-strength
4
high-strength composite
4

Similar Publications

Background: Pickering emulsions prepared with octenyl succinic anhydride-modified starch (OSAS) show significant promise as replacements for animal fat. However, the underlying mechanism of incorporating an OSAS-based Pickering emulsion into a myofibrillar protein (MP) gel and its impact on the gel properties remain poorly understood. In this study, the effects of OSAS at varying concentrations (0-10.

View Article and Find Full Text PDF

Background: The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting; however, autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area, whereas allogeneic or xenografts are even more limited by immune rejection. Tissue-engineered peripheral nerve scaffolds, with the morphology and structure of natural nerves and complex biological signals, hold the most promise as ideal peripheral nerve "replacements".

Aim: To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method, and use human umbilical cord mesenchymal stem cells (hUC-MSCs) as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.

View Article and Find Full Text PDF

Managing wounds infected with multi-drug-resistant (MDR) bacteria remains a significant public health challenge in clinical settings. While multifunctional hydrogels are commonly employed to treat skin infections, there is a scarcity of hydrogels that effectively combine cationic guar gum (CG) with both potent antimicrobial and safe therapeutic actions. This study introduces a novel pH responsive, dual-dynamically crosslinked hydrogel (CFC-PDA/Ag), synthesized by crosslinking CG with polydopamine (PDA)-coated silver nanozymes (PDA/PM-AgNPs).

View Article and Find Full Text PDF

It has long been speculated that the mechanical properties of the human oocyte can be an indicator for oocyte viability. Recent studies have demonstrated that embryo implantation rates, following Intra-Cytoplasmic Sperm Injection (ICSI) procedures, may be increased if the shear modulus value of the oocyte Zona Pellucida (ZP) is taken into consideration during embryo transfer. The shear modulus was determined by an iterative oocyte specific finite element (FE) analysis based on the clinical ICSI data.

View Article and Find Full Text PDF

Objectives: This study aimed to verify if composites containing dicalcium phosphate dihydrate particles (DCPD) are able to induce dentin remineralization in vitro. Additionally, the mechanical properties of the materials were tested.

Methods: Four composites with 50 vol% inorganic content and 1 BisGMA: 1 TEGDMA (mols) were prepared, with different DCPD:glass ratios (50:0, 40:10, 30:20 and 0:50).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!