Lipids are important modifiers of protein function, particularly as parts of lipoproteins, which transport lipophilic substances and mediate cellular uptake of circulating lipids. As such, lipids are of particular interest as blood biological markers for cardiovascular disease (CVD) as well as for conditions linked to CVD such as atherosclerosis, diabetes mellitus, obesity and dietary states. Notably, lipid research is particularly well developed in the context of CVD because of the relevance and multiple causes and risk factors of CVD. The advent of methods for high-throughput screening of biological molecules has recently resulted in the generation of lipidomic profiles that allow monitoring of lipid compositions in biological samples in an untargeted manner. These and other earlier advances in biomedical research have shaped the knowledge we have about lipids in CVD. To evaluate the knowledge acquired on the multiple biological functions of lipids in CVD and the trends in their research, we collected a dataset of references from the PubMed database of biomedical literature focused on plasma lipids and CVD in human and mouse. Using annotations from these records, we were able to categorize significant associations between lipids and particular types of research approaches, distinguish non-biological lipids used as markers, identify differential research between human and mouse models, and detect the increasingly mechanistic nature of the results in this field. Using known associations between lipids and proteins that metabolize or transport them, we constructed a comprehensive lipid-protein network, which we used to highlight proteins strongly connected to lipids found in the CVD-lipid literature. Our approach points to a series of proteins for which lipid-focused research would bring insights into CVD, including Prostaglandin G/H synthase 2 (PTGS2, a.k.a. COX2) and Acylglycerol kinase (AGK). In this review, we summarize our findings, putting them in a historical perspective of the evolution of lipid research in CVD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10742042 | PMC |
http://dx.doi.org/10.3390/cimb45120618 | DOI Listing |
Minerva Urol Nephrol
January 2025
Department of Urology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China -
Background: The rising incidence of kidney stones underscores the imperative to devise effective preventive measures. While a robust association between cardiovascular disease (CVD) and kidney stones exists, the current research landscape lacks investigations between cardiovascular health (CVH) and kidney stones. This study aims to explore the association between CVH, assessed by Life's Essential 8 (LE8), and kidney stones, with the role of blood lipids and insulin resistance in this relationship.
View Article and Find Full Text PDFHealthcare (Basel)
December 2024
Faculty of Pharmacy, Le Van Thinh Hospital, Ho Chi Minh City 700000, Vietnam.
Dyslipidemia, a significant risk factor for cardiovascular disease (CVD), is marked by abnormal lipid levels, such as the elevated lowering of low-density lipoprotein cholesterol (LDL-C). Statins are the first-line treatment for LDL-C reduction. Pitavastatin (PIT) has shown potential in lowering LDL-C and improving high-density lipoprotein cholesterol (HDL-C).
View Article and Find Full Text PDFJ Family Med Prim Care
December 2024
Department of Orthopedics, B.J Medical College, Ahmedabad, Gujarat, India.
Background: Cardiovascular diseases (CVDs) are one of the most prevalent causes of mortality worldwide, especially significant in low- and middle-income countries. Kyrgyzstan and India represent such nations that face a huge burden of CVD-related deaths globally. Understanding the prevalence of traditional cardiovascular risk factors (CVRFs) in these populations is critical for effective prevention and management strategies.
View Article and Find Full Text PDFFood Funct
January 2025
China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
Cardiovascular diseases (CVD) represent a primary global health challenge. Poor dietary choices and lifestyle factors significantly increase the risk of developing CVD. Legumes, recognized as functional foods, contain various bioactive components such as active peptides, protease inhibitors, saponins, isoflavones, lectins, phytates, and tannins.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Among hypertensive cohorts across different nations, the relationship between the triglyceride-glucose index (TyG) and its conjunction with obesity metrics in relation to cardiovascular disease (CVD) incidence and mortality remains to be elucidated.
Methods: This study enrolled 9,283, 164,357, and 5,334 hypertensives from the National Health and Nutrition Examination Survey (NHANES), UK Biobank (UKBB), and Shanghai Pudong cohort. The related outcomes for CVD were defined by multivariate Cox proportional hazards models, Generalized Additive Models and Mendelian randomization analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!