A Bioinformatics Toolkit for Next-Generation Sequencing in Clinical Oncology.

Curr Issues Mol Biol

Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France.

Published: December 2023

Next-generation sequencing (NGS) has taken on major importance in clinical oncology practice. With the advent of targeted therapies capable of effectively targeting specific genomic alterations in cancer patients, the development of bioinformatics processes has become crucial. Thus, bioinformatics pipelines play an essential role not only in the detection and in identification of molecular alterations obtained from NGS data but also in the analysis and interpretation of variants, making it possible to transform raw sequencing data into meaningful and clinically useful information. In this review, we aim to examine the multiple steps of a bioinformatics pipeline as used in current clinical practice, and we also provide an updated list of the necessary bioinformatics tools. This resource is intended to assist researchers and clinicians in their genetic data analyses, improving the precision and efficiency of these processes in clinical research and patient care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10741970PMC
http://dx.doi.org/10.3390/cimb45120608DOI Listing

Publication Analysis

Top Keywords

next-generation sequencing
8
clinical oncology
8
bioinformatics
5
bioinformatics toolkit
4
toolkit next-generation
4
clinical
4
sequencing clinical
4
oncology next-generation
4
sequencing ngs
4
ngs major
4

Similar Publications

Skmer approach improves species discrimination in taxonomically problematic genus (Theaceae).

Plant Divers

November 2024

CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.

Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants. However, conserved DNA barcoding markers, including complete plastid genome and nuclear ribosomal DNA (nrDNA) sequences, are inadequate for accurate species identification. Skmer, a recently proposed approach that estimates genetic distances among species based on unassembled genome skims, has been proposed to effectively improve species discrimination rate.

View Article and Find Full Text PDF

Background: Targeted next-generation sequencing (tNGS) is promising alternative to phenotypic drug susceptibility testing (pDST) for detecting drug-resistant tuberculosis (DRTB). This study explored the potential cost-effectiveness of tNGS for the diagnosis of DR-TB across 3 settings: India, South Africa and Georgia.

Methods: To inform WHO guideline development group (GDG) on tNGS we developed a stochastic decision analysis model and assessed cost-effectiveness of tNGS for DST among rifampicin resistance individuals.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common malignant bone tumor affecting adolescents and young adults and it usually occurs in the long bones of the extremities. The detection of cancer-related genetic alterations has a growing effect in guiding diagnosis, prognosis and targeted therapies. However, little is known about the molecular aspects involved in the etiology and progression of OS, which limits options for targeted therapies.

View Article and Find Full Text PDF

The advent of personalized and precision medicine has revolutionized oncology and treatment of gynecological cancer. These innovative approaches tailor treatments to individual patient profiles beyond genetic markers considering environmental and lifestyle factors, thereby optimizing therapeutic efficacy and minimizing adverse effects. Precision medicine uses advanced genomic technologies such as next-generation sequencing to perform comprehensive tumor profiling.

View Article and Find Full Text PDF

The article provides a thorough and up-to-date analysis of the role that microRNAs (miRNAs) within the realm of cancer therapy, paying specific attention to their diagnostic, prognostic as well as therapeutic capabilities. The miRNAs (small non-coding RNAs) are the current major genes that regulate gene expression. They are a key factor in the genesis of cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!