The soil carbon storage in the Qinghai-Tibet Plateau wetlands is affected by microbiota and wetland types, but the response mechanisms of carbon sequestration microorganisms on the Qinghai-Tibet Plateau to different wetland types are still poorly described. To explore the differences in carbon sequestration microbial communities in different wetlands and the main influencing factors, this study took a marsh wetland, river source wetland and lakeside wetland of Qinghai Lake as the research objects and used high-throughput sequencing to study the functional gene, cbbL, of carbon sequestration microorganisms. The results showed that the dominant bacterial group of carbon sequestration microorganisms in marsh and river source wetlands was Proteobacteria, and the dominant bacterial group in the lakeside wetland was Cyanobacteria. The alpha diversity, relative abundance of Proteobacteria and total carbon content were the highest in the marsh wetland, followed by the river source wetland, and they were the lowest in the lakeside wetland. In addition, the physical and chemical characteristics of the three wetland types were significantly different, and the soil temperature and moisture and total carbon content were the most important factors affecting the community structures of carbon-sequestering microorganisms. There was little difference in the total nitrogen contents between the marsh wetland and river source wetland. However, the total nitrogen content was also an important factor affecting the diversity of the carbon sequestration microbial community. In summary, the wetland type significantly affects the process of soil carbon sequestration. Compared with the riverhead and lakeside wetlands, the marsh wetland has the highest carbon storage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10740943PMC
http://dx.doi.org/10.3390/biology12121503DOI Listing

Publication Analysis

Top Keywords

carbon sequestration
28
marsh wetland
16
river source
16
wetland
15
sequestration microbial
12
wetland types
12
sequestration microorganisms
12
wetland river
12
source wetland
12
lakeside wetland
12

Similar Publications

The rapid development of China's economy and the acceleration of the urbanization process have led to a significant increase in carbon emissions, and more effective policies are urgently needed. As the first city in China to be approved for the overall master plan of territorial space, Chongqing is facing new opportunities in urban construction. This research constructed a classification system of the territorial space functional areas in Chongqing (CQ-TSFA) and matched the corresponding carbon emission and carbon sequestration projects.

View Article and Find Full Text PDF

Biocomposites of 2D layered materials.

Nanoscale Horiz

January 2025

Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute and Huck Institute of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Molecular composites, such as bone and nacre, are everywhere in nature and play crucial roles, ranging from self-defense to carbon sequestration. Extensive research has been conducted on constructing inorganic layered materials at an atomic level inspired by natural composites. These layered materials exfoliated to 2D crystals are an emerging family of nanomaterials with extraordinary properties.

View Article and Find Full Text PDF

Farming practices such as soil tillage, organic/mineral fertilization, irrigation, crop selection and residues management influence multiple ecosystem services provided by agricultural systems. These practices exhibit complex, non-linear interrelationships that affect crop productivity, water quality, and non-carbon dioxide greenhouse gases (GHG) emissions, possibly offsetting their benefits regarding soil organic carbon (SOC) sequestration. Current methodologies from the Intergovernmental Panel on Climate Change (IPCC) for assessing the impacts of alternative farming practices on GHG emissions rely on global or country-specific coefficients.

View Article and Find Full Text PDF

Lignin, as the abundant carbon polymer, is essential for carbon cycle and biorefinery. Microorganisms interact to form communities for lignin biodegradation, yet it is a challenge to understand such complex interactions. Here, we develop a coastal lignin-degrading bacterial consortium (LD), through "top-down" enrichment.

View Article and Find Full Text PDF

Increased but not pristine soil organic carbon stocks in restored ecosystems.

Nat Commun

January 2025

Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.

Ecosystem restoration can contribute to climate change mitigation, as recovering ecosystems sequester atmospheric CO in biomass and soils. It is, however, unclear how much soil organic carbon (SOC) stocks recover across different restored ecosystems. Here, we show SOC recovery in different contexts globally by consolidating 41 meta-analyses into a second-order meta-analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!