Preconditioning with Substance P Restores Therapeutic Efficacy of Aged ADSC by Elevating TNFR2 and Paracrine Potential.

Biology (Basel)

Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.

Published: November 2023

Aging leads to a decline in stem cell activity by reducing the repopulation rate and paracrine potential, ultimately diminishing efficacy in vivo. TNF-α can exert inflammatory and cell death actions via Erk by binding to TNFR-1, and survival and tissue repair actions via Akt by binding to TNFR-2. Aged cells are reported to have insufficient expression of TNFR-2, indicating that aged adipose-derived stem cells (ADSCs-E) lack the ability for cell survival and immune control compared to young ADSCs (ADSCs-Y). This study aims to assess the preconditioning effect of SP on the response of ADSCs-E to inflammation. ADSCs-E were treated with SP and then exposed to a high dose of TNF-α for 24 h. Consequently, ADSC-E exhibited weaker viability and lower TNFR2 levels compared to ADSC-Y. In response to TNF-α, the difference in TNFR2 expression became more pronounced in ADSC-E and ADSC-Y. Moreover, ADSC-E showed a severe deficiency in proliferation and paracrine activity. However, preconditioning with SP significantly enhanced the viability of ADSCs-E and also restored TNFR2 expression and paracrine potential, similar to ADSC-Y under inflammatory conditions. Our findings support the idea that preconditioning with SP has the potential to restore the cellular function of senescent stem cells before transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10740808PMC
http://dx.doi.org/10.3390/biology12121458DOI Listing

Publication Analysis

Top Keywords

paracrine potential
12
stem cells
8
tnfr2 expression
8
preconditioning
4
preconditioning substance
4
substance restores
4
restores therapeutic
4
therapeutic efficacy
4
efficacy aged
4
aged adsc
4

Similar Publications

ACSL1 Aggravates Thromboinflammation by LPC/LPA Metabolic Axis in Hyperlipidemia Associated Myocardial Ischemia-Reperfusion Injury.

Adv Sci (Weinh)

January 2025

Shanghai Key Laboratory of Vascular Lesions and Remodeling, Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.

Acute myocardial infarction (AMI) is associated with well-established metabolic risk factors, especially hyperlipidemia and obesity. Myocardial ischemia-reperfusion injury (mIRI) significantly offsets the therapeutic efficacy of revascularization. Previous studies indicated that disrupted lipid homeostasis can lead to lipid peroxidation damage and inflammation, yet the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Liver fibrosis is still a serious health concern worldwide, and there is increasing interest in mesenchymal stem cells (MSCs) with tremendous potential for treating this disease because of their regenerative and paracrine effects. Recently, many researches have focused on using the released exosomes (EXOs) from stem cells to treat liver fibrosis rather than using parent stem cells themselves. MSC-derived EXOs (MSC-EXOs) have demonstrated favourable outcomes similar to cell treatment in terms of regenerative, immunomodulatory, anti-apoptotic, anti-oxidant, anti-necroptotic, anti-inflammatory and anti-fibrotic actions in several models of liver fibrosis.

View Article and Find Full Text PDF

Introduction: Recent findings show that visible light, particularly blue light, stimulates melanogenesis in human skin, though the underlying mechanisms remain debated. This study aimed to determine the cell damage threshold of non-ionizing blue light on keratinocytes while preserving their ability to stimulate melanogenesis.

Methods: Human keratinocytes (N = 3) and melanocytes (N = 3) were isolated from skin samples of varying Fitzpatrick skin phototypes and irradiated with blue light (λpeak = 457 nm) and UVA light (λpeak = 385 nm).

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cells derived cytokines associated with AKT/IAPs signaling ameliorate Alzheimer's disease development.

Stem Cell Res Ther

January 2025

NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative condition affecting around 50 million people worldwide. Bone marrow-derived mesenchymal stem cells (BMMSCs) have emerged as a promising source for cellular therapy due to their ability to differentiate into multiple cell types and their paracrine effects. However, the direct injection of BMMSCs can lead to potential unpredictable impairments, prompting a renewed interest in their paracrine effects for AD treatment.

View Article and Find Full Text PDF

Background: Exosomes sourced from mesenchymal stem cells (MSC-EXOs) have become a promising therapeutic tool for sepsis-induced myocardial dysfunction (SMD). Our previous study demonstrated that Apelin pretreatment enhanced the therapeutic benefit of MSCs in myocardial infarction by improving their paracrine effects. This study aimed to determine whether EXOs sourced from Apelin-pretreated MSCs (Apelin-MSC-EXOs) would have potent cardioprotective effects against SMD and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!