Lung cancer (LC) stands as the foremost cause of cancer-related fatality rates worldwide. Early diagnosis significantly enhances patient survival rate. Nowadays, low-dose computed tomography (LDCT) is widely employed on the chest as a tool for large-scale lung cancer screening. Nonetheless, a large amount of chest radiographs creates an onerous burden for radiologists. Some computer-aided diagnostic (CAD) tools can provide insight to the use of medical images for diagnosis and can augment diagnostic speed. However, due to the variation in the parameter settings across different patients, substantial discrepancies in image voxels persist. We found that different voxel sizes can create a compromise between model generalization and diagnostic efficacy. This study investigates the performance disparities of diagnostic models trained on original images and LDCT images reconstructed to different voxel sizes while making isotropic. We examined the ability of our method to differentiate between benign and malignant nodules. Using 11 features, a support vector machine (SVM) was trained on LDCT images using an isotropic voxel with a side length of 1.5 mm for 225 patients in-house. The result yields a favorable model performance with an accuracy of 0.9596 and an area under the receiver operating characteristic curve (ROC/AUC) of 0.9855. In addition, to furnish CAD tools for clinical application, future research including LDCT images from multi-centers is encouraged.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10742752 | PMC |
http://dx.doi.org/10.3390/diagnostics13243690 | DOI Listing |
BMJ Open
January 2025
Centre for Cancer Screening, Prevention and Early Diagnosis, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
Background: Worldwide, lung cancer (LC) is the second most frequent cancer and the leading cause of cancer related mortality. Low-dose CT (LDCT) screening reduced LC mortality by 20-24% in randomised trials of high-risk populations. A significant proportion of those screened have nodules detected that are found to be benign.
View Article and Find Full Text PDFJ Clin Med
January 2025
Translational Research Unit, Hospital Universitario Miguel Servet, IIS Aragón, 50009 Zaragoza, Spain.
Lung cancer is the primary cause of cancer-related deaths. Most patients are typically diagnosed at advanced stages. Low-dose computed tomography (LDCT) has been proven to reduce lung cancer mortality, but screening programs using LDCT are associated with a high number of false positives and unnecessary thoracotomies.
View Article and Find Full Text PDFBMC Cardiovasc Disord
January 2025
Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
Objectives: This study aimed to evaluate the feasibility and accuracy of non-electrocardiogram (ECG)-triggered chest low-dose computed tomography (LDCT) with a kV-independent reconstruction algorithm in assessing coronary artery calcification (CAC) degree and cardiovascular disease risk in patients receiving maintenance hemodialysis (MHD).
Methods: In total, 181 patients receiving MHD who needed chest CT and coronary artery calcium score (CACS) scannings sequentially underwent non-ECG-triggered, automated tube voltage selection, high-pitch chest LDCT with a kV-independent reconstruction algorithm and ECG-triggered standard CACS scannings. Then, the image quality, radiation doses, Agatston scores (ASs), and cardiac risk classifications of the two scans were compared.
BMC Cancer
January 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China.
Background: An increase in the prevalence of lung cancer that is not smoking-related has been noticed in recent years. Unfortunately, these patients are not included in low dose computer tomography (LDCT) screening programs and are not actually considered in early diagnosis. Therefore, improved early diagnosis methods are urgently needed for non-smokers.
View Article and Find Full Text PDFJCO Clin Cancer Inform
January 2025
Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL.
Purpose: Lung cancer screening (LCS) has the potential to reduce mortality and detect lung cancer at its early stages, but the high false-positive rate associated with low-dose computed tomography (LDCT) for LCS acts as a barrier to its widespread adoption. This study aims to develop computable phenotype (CP) algorithms on the basis of electronic health records (EHRs) to identify individual's eligibility for LCS, thereby enhancing LCS utilization in real-world settings.
Materials And Methods: The study cohort included 5,778 individuals who underwent LDCT for LCS from 2012 to 2022, as recorded in the University of Florida Health Integrated Data Repository.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!