Edge-Driven Multi-Agent Reinforcement Learning: A Novel Approach to Ultrasound Breast Tumor Segmentation.

Diagnostics (Basel)

Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12120, Thailand.

Published: December 2023

A segmentation model of the ultrasound (US) images of breast tumors based on virtual agents trained using reinforcement learning (RL) is proposed. The agents, living in the edge map, are able to avoid false boundaries, connect broken parts, and finally, accurately delineate the contour of the tumor. The agents move similarly to robots navigating in the unknown environment with the goal of maximizing the rewards. The individual agent does not know the goal of the entire population. However, since the robots communicate, the model is able to understand the global information and fit the irregular boundaries of complicated objects. Combining the RL with a neural network makes it possible to automatically learn and select the local features. In particular, the agents handle the edge leaks and artifacts typical for the US images. The proposed model outperforms 13 state-of-the-art algorithms, including selected deep learning models and their modifications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10742763PMC
http://dx.doi.org/10.3390/diagnostics13243611DOI Listing

Publication Analysis

Top Keywords

reinforcement learning
8
edge-driven multi-agent
4
multi-agent reinforcement
4
learning novel
4
novel approach
4
approach ultrasound
4
ultrasound breast
4
breast tumor
4
tumor segmentation
4
segmentation segmentation
4

Similar Publications

Polysomnography (PSG) is crucial for diagnosing sleep disorders, but manual scoring of PSG is time-consuming and subjective, leading to high variability. While machine-learning models have improved PSG scoring, their clinical use is hindered by the 'black-box' nature. In this study, we present SleepXViT, an automatic sleep staging system using Vision Transformer (ViT) that provides intuitive, consistent explanations by mimicking human 'visual scoring'.

View Article and Find Full Text PDF

This study introduces a novel ensemble learning technique namely Multi-Armed Bandit Ensemble (MAB-Ensemble), designed for lane detection in road images intended for autonomous vehicles. The foundation of the proposed MAB-Ensemble technique is inspired in terms of Multi-Armed bandit optimization to facilitate efficient model selection for lane segmentation. The benchmarking dataset namely TuSimple is used for training, validating and testing the proposed and existing lane detection techniques.

View Article and Find Full Text PDF

Dissociating social reward learning and behavior in alcohol use disorder.

Transl Psychiatry

January 2025

Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.

Background: Alcohol use disorder (AUD) is associated with deficits in social cognition and behavior, but why these deficits are acquired is unknown. We hypothesized that a reduced association between actions and outcomes for others, i.e.

View Article and Find Full Text PDF

This research introduces an innovative approach to optimal control for a class of linear systems with input saturation. It leverages the synergy of Takagi-Sugeno (T-S) fuzzy models and reinforcement learning (RL) techniques. To enhance interpretability and analytical accessibility, our approach applies T-S models to approximate the value function and generate optimal control laws while incorporating prior knowledge.

View Article and Find Full Text PDF

Humans are excellent at modifying our behaviour depending on context. For example, humans will change how they explore when losses are possible compared to when they are not possible. However, it remains unclear what specific cognitive and neural processes are modulated when exploring in different contexts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!