The therapeutic potential of directly reprogrammed neural stem cells (iNSCs) for neurodegenerative diseases relies on reducing the innate tumorigenicity of pluripotent stem cells. However, the heterogeneity within iNSCs is a major hurdle in quality control prior to clinical applications. Herein, we generated iNSCs from human fibroblasts, by transfecting transcription factors using Sendai virus particles, and characterized the expression of iNSC markers. Using immunostaining and quantitative real time -polymerase chain reaction (RT -qPCR), no differences were observed between colonies of iNSCs and iNSC-derived neurons. Unexpectedly, patch-clamp analysis of iNSC-derived neurons revealed distinctive action potential firing even within the same batch product. We performed single-cell RNA sequencing in fibroblasts, iNSCs, and iNSC-derived neurons to dissect their functional heterogeneity and identify cell fate regulators during direct reprogramming followed by neuronal differentiation. Pseudotime trajectory analysis revealed distinct cell types depending on their gene expression profiles. Differential gene expression analysis showed distinct , , and expression patterns in iNSCs and iNSC-derived neurons. Taken together, we recommend performing a predictable functional assessment with appropriate surrogate markers to ensure the quality control of iNSCs and their differentiated neurons, particularly before cell banking for regenerative cell therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10742074 | PMC |
http://dx.doi.org/10.3390/cells12242818 | DOI Listing |
Stem Cell Res Ther
December 2024
Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany.
Transplantation of induced pluripotent stem cell-derived neural cells represents a promising strategy for treating neurodegenerative diseases. However, reprogramming of somatic cells and their subsequent neural differentiation is complex and time-consuming, thereby impeding autologous applications. Recently, direct transcription factor-based conversion of blood cells into induced neural stem cells (iNSCs) has emerged as a potential alternative.
View Article and Find Full Text PDFCells
December 2023
Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea.
The therapeutic potential of directly reprogrammed neural stem cells (iNSCs) for neurodegenerative diseases relies on reducing the innate tumorigenicity of pluripotent stem cells. However, the heterogeneity within iNSCs is a major hurdle in quality control prior to clinical applications. Herein, we generated iNSCs from human fibroblasts, by transfecting transcription factors using Sendai virus particles, and characterized the expression of iNSC markers.
View Article and Find Full Text PDFStem Cell Res Ther
February 2021
Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
Background: Recently, growing evidence has indicated an important role of the complement system, a crucial component of immunity, in mediating neuroinflammation and promoting neuronal apoptosis following closed head injury (CHI). We previously reported that transplanted induced neural stem cells (iNSCs) pre-treated with CHI mouse serum could enhance complement receptor type 1-related protein y (Crry) expression and ameliorate complement-mediated damage in mouse CHI models. However, the mechanism underlying the elevated levels of Crry expression remains elusive.
View Article and Find Full Text PDFCell Death Dis
December 2020
Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
Recent studies on developing three-dimensional (3D) brain organoids from stem cells have allowed the generation of in vitro models of neural disease and have enabled the screening of drugs because these organoids mimic the complexity of neural tissue. Niemann-Pick disease, type C (NPC) is a neurodegenerative lysosomal storage disorder caused by mutations in the NPC1 or NPC2. The pathological features underlying NPC are characterized by the abnormal accumulation of cholesterol in acidic compartments, including late endosomes and lysosomes.
View Article and Find Full Text PDFJ Alzheimers Dis
May 2021
Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA.
Alzheimer's disease (AD) is a devastating neurodegenerative disorder, neuropathologically characterized by hyperphosphorylation of tau and formation of amyloid plaques. Most AD cases are sporadic with no clear cause. Cell models play an important role in understanding the pathogenesis of sporadic AD, and the cell reprogramming and epigenetic techniques have provided new avenue to model the disorder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!