Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Erosion and tillage changes negatively the soil physical structure, which directly impacts agricultural systems and consequently food security. To mitigate these adverse modifications, different polymeric materials from synthetic and natural sources, have been used as soil conditioners to improve the hydro-mechanical behavior of affected soils. One of the most interesting and used natural polymers is the alginate hydrogel. Although commercially available alginate hydrogels are primarily sourced from algal, they can also be sourced from bacteria. The gelation capacity of these hydrogels is determined by their molecular properties, which, in turn, are influenced by the production conditions. Bacterial alginate hydrogel production offers the advantage of precise control over environmental conditions during cultivation and extraction, thereby maintaining and enhancing their molecular properties. This, in turn, results in higher molecular weight and improved gelation capacity. In this study, we compared the effects of bacterial alginate (BH) and algal alginate (AH) hydrogels over the mechanical, hydraulic, and structural behavior of coarse quartz sand as a model soil. Mechanically, it was observed that the treatment with the lowest concentration of bacteria alginate hydrogel (BH1) reached higher values of yield strength, Young's modulus (E), shear modulus (G) and strain energy (U) than those treatments with algal alginate hydrogel (AH). Furthermore, the increase in the aggregate stability could be associated with the improvement of mechanical parameters. On the other hand, a greater water retention capacity was observed in the BH treatments, as well as a greater decrease in hydraulic conductivity with respect to the AH and control treatments. All these changes could be explained by the formation of bridge-like structures between the sand particles and the hydrogel, and this alteration may result in a shift in the mechanical and wettability characteristics of the treated soils. Finally, our findings emphasize the superior impact of bacterial alginate hydrogel on enhancing the mechanical and hydraulic properties of coarse quartz sand compared to traditional algal alginate. Besides, the use of bacterial alginate hydrogel could be useful to counteract erosion and water scarcity scenarios in agricultural systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10743275 | PMC |
http://dx.doi.org/10.3390/gels9120988 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!