Fast, reliable methods for characterizing the micelle-to-gel transition in emerging Pluronic F127/polysaccharide materials are essential for tailoring their applications as in situ gelling delivery systems. This study describes a simple fluorimetric method based on the response to gelation of the molecular probe thioflavin T (ThT). The techniques employed are (second derivative) steady-state and synchronous fluorescence. The capabilities of ThT as gelation reporter are tested for three model systems: Pluronic F127 (P16.6%), Pluronic F127/alginate (P16.6%ALG2%) and Pluronic F127/hyaluronic acid (P16.6%HA0.5%). We demonstrate that the changes in the short and long wavelength emissions of ThT allow accurate determination of the critical gelation temperatures in the investigated systems. The spectroscopic data providing information at molecular level are complemented with differential scanning microcalorimetric results revealing additional macroscopic insight into the micellization process. The gelation study is preceded by a solvatochromic analysis of ThT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10742936PMC
http://dx.doi.org/10.3390/gels9120939DOI Listing

Publication Analysis

Top Keywords

pluronic f127/polysaccharide
8
gelation
5
pluronic
5
gelation behaviour
4
behaviour pluronic
4
systems
4
f127/polysaccharide systems
4
systems revealed
4
revealed thioflavin
4
thioflavin fluorescence
4

Similar Publications

Thermoresponsive dual-network chitosan-based hydrogels with demineralized bone matrix for controlled release of rhBMP9 in the treatment of femoral head osteonecrosis.

Carbohydr Polym

March 2025

Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China. Electronic address:

In an effort to mitigate or reverse the pathological progression of early-stage osteonecrosis of the femoral head (ONFH), this study employed a promising strategy that involves the sustained delivery of osteogenic factors to augment core decompression, facilitated by the use of composite hydrogels. Specifically, a hydrogel was synthesized by blending chitosan, Pluronic F-127, and tripolyphosphate, utilizing both ionic bonding and copolymer micelle cross-linking techniques. This hydrogel demonstrated exceptional biocompatibility, temperature responsiveness, pH-dependent biodegradation, and controlled release properties.

View Article and Find Full Text PDF

High-affinity uric acid clearance based on motile β-CD/F-127 polyrotaxane microspheres for enhanced diabetic wound repair.

Carbohydr Polym

March 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Biomedical Engineering, Jinan University, Guangzhou 510632, China. Electronic address:

Hyperuricemia-related diabetic wounds are notoriously difficult to treat due to elevated uric acid (UA) levels, excessive reactive oxygen species (ROS), and chronic inflammation. Current therapies often fail to address these underlying causes, underscoring the need for innovative approaches that not only clear UA but also mitigate inflammation and promote tissue regeneration. In this study, we developed a polyrotaxane-based microsphere (HPR MS) system conjugated with 4,5-diamino-2-thiouracil (DT) to achieve high-affinity UA clearance without increasing cytotoxicity.

View Article and Find Full Text PDF

Integrating Particle Motion Tracking into Thermal Gel Electrophoresis for Label-Free Sugar Sensing.

ACS Sens

January 2025

Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States.

Bioanalytical sensors are adept at quantifying target analytes from complex sample matrices with high sensitivity, but their multiplexing capacity is limited. Conversely, analytical separations afford great multiplexing capacity but typically require analyte labeling to increase sensitivity. Here, we report the development of a separation-based sensor to sensitively quantify unlabeled polysaccharides using particle motion tracking within a microfluidic electrophoresis platform.

View Article and Find Full Text PDF

Polymer-based herbicide nanocarriers have shown potential for increasing the herbicide efficacy and environmental safety. This study aimed to develop, characterize, and evaluate toxicity to target and nontarget organisms of natural-based polymeric nanosystems for glyphosate. Polymers such as chitosan (CS), zein (ZN), and lignin (LG) were used in the synthesis.

View Article and Find Full Text PDF

Purpose: This study aimed to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) and surface-coated microspheres to improve the oral bioavailability of niclosamide.

Methods: A solubility screening study showed that liquid SNEDDS, prepared using an optimized volume ratio of corn oil, Cremophor RH40, and Tween 80 (20:24:56), formed nanoemulsions with the smallest droplet size. Niclosamide was incorporated into this liquid SNEDDS and spray-dried with calcium silicate to produce solid SNEDDS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!