Sarcopenic obesity (SO), characterized by age-related muscle loss and excess body fat, significantly impairs postural control. However, limited research has explored the effects of concurrent exercise training on neuromuscular strategies during postural control in older adults with SO. The study enrolled 50 older adults with SO, split into an intervention group (IG, = 25, mean age = 76.1 ± 3.5 years; mean BMI = 34.4 ± 4.0 kg/m) and a control group (CG, = 25, mean age = 75.9 ± 5.4 years; mean BMI = 32.9 ± 2.3 kg/m). Participants in the IG were engaged in 60-min Total Mobility Plus Program (TMP) sessions three times a week for four months, while the CG maintained their typical daily activities. Standardized evaluations were conducted both before and after the intervention. These assessments included the Romberg and Timed Up and Go (TUG) tests, as well as the measurement of Center of Pressure (CoP) displacements parameters under various conditions. Additionally, ankle muscle activities were quantified during postural control evaluations and maximal voluntary contractions of plantar and dorsal flexors. Post-intervention results revealed a significant reduction of the standing time measured in the Romberg (-15.6%, < 0.005) and TUG (-34.6%, < 0.05) tests. Additionally, CoP area and velocity were notably reduced in various conditions ( < 0.05). Postural control improvements were associated with an increase of strength ( < 0.05) and decrease of ankle muscle activation ( < 0.05). These findings highlight the reversibility of neuromuscular system alterations associated with the synergistic effects of sarcopenia and obesity, emphasizing the trainability of postural control regulation within this population. By incorporating these insights into clinical practice and public health strategies, it seems possible to optimize the health and well-being of older adults with SO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10743236 | PMC |
http://dx.doi.org/10.3390/ejihpe13120192 | DOI Listing |
Australas J Ageing
March 2025
Department of Physiotherapy, Faculty of Health Sciences, International Hellenic University - Alexander Campus, Thessaloniki, Greece.
Objectives: To determine the safety and efficacy of a video-supported Cawthorne-Cooksey exercise program (CCEP) in improving balance, dizziness and decreasing fear of falling in older adults with balance deficits and dizziness.
Methods: Thirty-two older adults were divided into two groups (intervention and control). The intervention group followed a video-supported CCEP group, while the control group received written instructions to maintain their usual activity and counselling on fall prevention.
Alzheimers Dement
January 2025
Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.
Introduction: We aimed to compare gait between individuals with Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and cognitively unimpaired (CU) individuals and to evaluate the association between gait and regional amyloid beta (Aβ) burden in AD and DLB.
Methods: We included 420 participants (70 AD, 70 DLB, 280 CU) in the Mayo Clinic Study of Aging (MCSA). Gait was assessed using a pressure-sensor walkway.
Front Bioeng Biotechnol
January 2025
MGM Centre of Human Movement Science, MGM School of Physiotherapy, MGM Institute of Health Sciences, Navi Mumbai, India.
Purpose: Pelvic and hip motion are pivotal in maintaining postural control and energy efficient gait. An insight into influence of age and gender on the coupled motion of hip and pelvis in gait-cycle will guide clinical rehabilitation strategies and pertinent technology-design for specific age-groups. Therefore, present study evaluated pelvic and hip-joint gait kinematics in healthy females and males across adult-hood.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Department of Sports Science, Zhejiang University, Hangzhou, Zhejiang, China.
Human postural control system has the capacity to adapt to balance-challenging perturbations. However, the characteristics and mechanisms of postural adaptation to continuous perturbation under the sensory conflicting environments remain unclear. We aimed to investigate the functional role of oscillatory coupling drive to lower-limb muscles with changes in balance control during postural adaptation under multisensory congruent and incongruent environments.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Neurology, Peking University First Hospital, Beijing, People's Republic of China.
Persistent Postural-Perceptual Dizziness (PPPD) is a common cause of chronic vestibular syndrome. Although previous studies have identified central abnormalities in PPPD, the specific neural circuits and the alterations in brain network topological properties, and their association with dizziness and postural instability in PPPD remain unclear. This study includes 30 PPPD patients and 30 healthy controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!