Mixing Gibbs energy and phase equilibria of aqueous solutions of polyglycine were studied theoretically by means of polymer reference interaction site model integral equation theory combined with the Gibbs-Duhem method. In addition to the ordinary liquid-liquid phase separation between dilute and concentrated solutions, the theoretical calculation predicted the coexistence of two coacervate phases, namely, the lower- and higher-density coacervates. The relative thermodynamic stabilities of these two phases change with the polymerization degree of polyglycine. The higher-density coacervate phase was rapidly stabilized by increasing the polymer length, and the lower-density phase became metastable at large polymers. The hydrogen bonds between the peptide chains were strengthened, and water was thermodynamically destabilized in the higher-density coacervate. A possible relation with the formation of amyloid fibril within a liquid droplet is also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0185157DOI Listing

Publication Analysis

Top Keywords

coexistence coacervate
8
coacervate phases
8
polymer reference
8
reference interaction
8
interaction site
8
site model
8
higher-density coacervate
8
phases polyglycine
4
polyglycine water
4
water suggested
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!