Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We used inelastic x-ray scattering methods to measure the terahertz spectrum of density fluctuations of ethanol in both liquid and solid phases. The results of a Bayesian inference-based lineshape analysis with a multiple excitation model and the comparison with a previous similar analysis on water indicate that the different structures induced by hydrogen bonds in ethanol and water have a profound influence on the respective dynamic responses, the latter being characterized by longer living and better resolved high-frequency acoustic excitations. In addition, we compare these findings with those obtained with an alternative approach based on the exponential expansion theory and ensuring sum rules fulfillment, demonstrating that the model's choice directly impacts the number of spectral modes detected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0180961 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!