Endohedral metal-metal-bonding fullerenes have recently emerged, in which encapsulated metals form a metal-metal bond. However, the physical reasons why some metal elements prefer to form metal-metal bonds inside fullerene are still unclear. Herein, we reported first-principles calculations on electronic structures, bonding properties, dynamics, and thermodynamic stabilities of endohedral metallofullerenes M2@C82 (M = Sc, Y, La, Lu). Multiple bonding analysis approaches unambiguously reveal the existence of one two-center two-electron σ covalent metal-metal bond in M2@C82 (M = Sc, Y, Lu); however, the La-La bonding interaction in La2@C82 is weaker and could not be categorized as one metal-metal covalent bond. The energy decomposition analysis on bonding interactions between an encapsulated metal dimer and fullerene cages suggested that there exist two electron-sharing bonds between a metal dimer and fullerene cages. The reasons why La2 prefers to donate electrons to fullerene cages rather than form a standard σ covalent metal-metal bond are mainly attributed to two following facts: La2 has a lower ionization potential, while the hybridization of ns, (n - 1)d, and np atomic orbitals in La2 is higher. Ab initio molecular dynamic simulations reveal that the M-M bond length at room temperature follows the trend of Sc < Lu < Y. The statistical thermodynamics calculations at different temperatures reveal that the experimentally observed endohedral metal-metal-bonding fullerenes M2@C82 have high concentrations in the endohedral fullerene formation temperature range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0180309 | DOI Listing |
J Am Chem Soc
December 2024
College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
J Chem Phys
December 2023
MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
Endohedral metal-metal-bonding fullerenes have recently emerged, in which encapsulated metals form a metal-metal bond. However, the physical reasons why some metal elements prefer to form metal-metal bonds inside fullerene are still unclear. Herein, we reported first-principles calculations on electronic structures, bonding properties, dynamics, and thermodynamic stabilities of endohedral metallofullerenes M2@C82 (M = Sc, Y, La, Lu).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2024
Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069, Dresden, Germany.
Synthesis of molecular compounds with metal-metal bonds between 4f elements is recognized as one of the fascinating milestones in lanthanide metallochemistry. The main focus of such studies is on heavy lanthanides due to the interest in their magnetism, while bonding between light lanthanides remains unexplored. In this work, the Nd─Nd bonding in Nd-dimetallofullerenes as a case study of metal-metal bonding between early lanthanides is demonstrated.
View Article and Find Full Text PDFJ Chem Phys
November 2022
MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
Endohedral metal-metal-bonding fullerenes, in which encapsulated metals form covalent metal-metal bonds inside, are an emerging class of endohedral metallofullerenes. Herein, we reported quantum-chemical studies on the electronic structures, chemical bonding, and dynamic fluxionality behavior of endohedral metal-metal-bonding fullerenes Lu@C (2n = 76-88). Multiple bonding analysis approaches, including molecular orbital analysis, the natural bond orbital analysis, electron localization function, adaptive natural density partitioning analysis, and quantum theory of atoms in molecules, have unambiguously revealed one two-center two-electron σ covalent bond between two Lu ions in fullerenes.
View Article and Find Full Text PDFChem Sci
April 2021
Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China Hefei 230026 China
Trimetallic carbide clusterfullerenes (TCCFs) encapsulating a quinary MC cluster represent a special family of endohedral fullerenes with an open-shell electronic configuration. Herein, a novel TCCF based on a medium-sized rare earth metal, dysprosium (Dy), is synthesized for the first time. The molecular structure of DyC@ (7)-C determined by single crystal X-ray diffraction shows that the encapsulated DyC cluster adopts a bat ray configuration, in which the acetylide unit C is elevated above the Dy plane by ∼1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!