A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The development of abamectin resistance in Liriomyza trifolii and its contribution to thermotolerance. | LitMetric

AI Article Synopsis

  • Liriomyza trifolii is a significant invasive pest that affects horticultural and vegetable crops, causing damage through its feeding and accelerated plant death during hot weather.
  • Long-term exposure to the insecticide abamectin has led to the development of a resistant strain (AB-R) that shows increased tolerance to heat and may also have cross-resistance to other pesticides.
  • This study highlights how resistance to pesticides can lead to enhanced thermotolerance in pests, emphasizing the need for further research on the complex mechanisms of insect adaptation to environmental stresses.

Article Abstract

Background: Liriomyza trifolii is an economically significant, invasive pest of horticultural and vegetable crops. The larvae form tunnels in foliage and hasten senescence and death. Outbreaks of L. trifolii often erupt in hot weather and are driven by thermotolerance; furthermore, the poor effectiveness of pesticides has made outbreaks more severe. But it is still unclear whether the development of insecticide tolerance will contribute to thermotolerance in L. trifolii.

Results: To explore potential synergistic relationships between insecticide exposure and thermotolerance in L. trifolii, we first generated an abamectin-resistant (AB-R) strain. Knockdown behavior, eclosion and survival rates, and expression levels of genes encoding heat shock proteins (Hsps) in L. trifolii were then examined in AB-R and abamectin-susceptible (AB-S) strains. Our results demonstrated that long-term selection pressure for abamectin resistance made L. trifolii more prone to develop cross-resistance to other insecticides containing similar ingredients. Furthermore, the AB-R strain exhibited enhanced thermotolerance and possessed an elevated critical thermal maximum temperature, and upregulated expression levels of Hsps during heat stress.

Conclusion: Collectively, our results indicate that thermal adaptation in L. trifolii was accompanied by emerging abamectin resistance. This study provides a theoretical basis for investigating the synergistic or cross-adaptive mechanisms that insects use to cope with adversity and demonstrates the complexity of insect adaptation to environmental and chemical stress. © 2023 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.7944DOI Listing

Publication Analysis

Top Keywords

abamectin resistance
12
liriomyza trifolii
8
ab-r strain
8
expression levels
8
trifolii
7
thermotolerance
5
development abamectin
4
resistance liriomyza
4
trifolii contribution
4
contribution thermotolerance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!