With a stacking-layered architecture, the bilayer two-dimensional-three-dimensional (2D-3D) perovskite heterostructure (PHS) not only eliminates surface defects but also protects the 3D perovskite matrix from external stimuli. However, these bilayer 2D-3D PHSs suffer from impaired interfacial charge carrier transport due to the relatively insulating 2D perovskite fragments with a random phase distribution. Over the past decade, substantial efforts have been devoted to pioneering molecular and structural designs of the 2D perovskite interlayers for improving their charge carrier mobility, which enables state-of-the-art perovskite solar cells with high power conversion efficiency and exceptional operational stability. Herein, this review offers a comprehensive and up-to-date overview on the recent progress of bilayer 2D-3D PHSs, encompassing advancements on spacer cation engineering, interfacial charge carrier modification, advanced deposition protocols, and characterization techniques. Then, the evolutionary trajectory of bilayer 2D-3D PHSs is outlined by summarizing its mainstream development trends, followed by a perspective discussion about its future research opportunities toward efficient and durable perovskite solar cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c09176 | DOI Listing |
Adv Mater
October 2024
Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
Biomater Sci
June 2024
School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
Micro-nanomaterials that can adopt different structures are powerful tools in the fields of biological and medical sciences. We previously developed a lipid membrane that can convert between 2D nanosheet and 3D vesicle forms using cationic copolymer polyallylamine-graft-polyethylene glycol and the anionic peptide E5. The properties of the membrane during conversion have been characterized only by confocal laser scan microscopy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
School of Polymer Science and Polymer Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, Ohio 44325, United States.
Studies indicated that two-dimensional (2D) metal halide perovskites (MHPs) embodied with three-dimensional (3D) MHPs were a facile way to realize efficient and stable perovskite solar cells (PSCs) and perovskite photodetectors (PPDs). Here, high-performance PSCs and PPDs, which are based on 2D/3D MHPs bilayer thin films, where the 2D MHPs are created by binary conjugated organic cations, are reported. Systemically studies reveal that the above novel 2D/3D MHPs bilayer thin films possess an enlarged crystal size, balanced charge transport, reduced charge carrier recombination, smaller charge-transfer resistance, and accelerated charge-extraction process compared to the 2D/3D MHPs bilayer thin films, where the 2D MHPs are created by a single conjugated organic cation.
View Article and Find Full Text PDFACS Nano
January 2024
Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
With a stacking-layered architecture, the bilayer two-dimensional-three-dimensional (2D-3D) perovskite heterostructure (PHS) not only eliminates surface defects but also protects the 3D perovskite matrix from external stimuli. However, these bilayer 2D-3D PHSs suffer from impaired interfacial charge carrier transport due to the relatively insulating 2D perovskite fragments with a random phase distribution. Over the past decade, substantial efforts have been devoted to pioneering molecular and structural designs of the 2D perovskite interlayers for improving their charge carrier mobility, which enables state-of-the-art perovskite solar cells with high power conversion efficiency and exceptional operational stability.
View Article and Find Full Text PDFACS Nano
November 2023
Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France.
The growth of bilayers of two-dimensional (2D) materials on conventional 3D semiconductors results in 2D/3D hybrid heterostructures, which can provide additional advantages over more established 3D semiconductors while retaining some specificities of 2D materials. Understanding and exploiting these phenomena hinge on knowing the electronic properties and the hybridization of these structures. Here, we demonstrate that a rhombohedral-stacked bilayer (AB stacking) can be obtained by molecular beam epitaxy growth of tungsten diselenide (WSe) on a gallium phosphide (GaP) substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!