Accurate spatiotemporal air pollution fields are essential for health impact and epidemiologic studies. There are an increasing number of studies that have combined observational data with spatiotemporally complete air pollution simulations. Land-use, speciated gaseous and particulate pollutant concentrations and chemical transport modeling are fused using a random forest approach to construct daily air quality fields for 12 pollutants (CO, NOx, NO, SO, O, PM, PM, and PM constituents: SO, NO, NH, EC and OC) between 2005 and 2014 for the continental United States with little spatial or temporal bias. R ranged from 0.45 to 0.96, depending upon pollutant. Additional analysis found that temporal R ranged from 0.84 to 0.99 and spatial R values ranged from 0.76 to 0.96 across species. Four-fold cross-validation was performed to assess the model's predictive power, and ranged from 0.40 for PM to 0.94 for SO with other pollutants falling within this range. Largest improvements were found for PM which had substantial bias in the CMAQ fields that varied east-to-west; smallest improvements were for SO which was already well simulated. The random forest model results to correct the simulation biases, while largely consistent year-to-year, did show slight variation due in part to changes in the distribution of monitors and changes in CMAQ simulation inputs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10735214PMC
http://dx.doi.org/10.1016/j.atmosenv.2022.118982DOI Listing

Publication Analysis

Top Keywords

random forest
12
forest approach
8
cmaq fields
8
air pollution
8
land variable
4
variable random
4
approach correct
4
correct spatial
4
spatial bias
4
bias fused
4

Similar Publications

Postnatal care refers to the support provided to mothers and their newborns immediately after childbirth and during the first six weeks of life, a period when most maternal and neonatal deaths occur. In the 30 countries studied, nearly 40 percent of women did not receive a postpartum care check-up. This research aims to evaluate and compare the effectiveness of machine learning algorithms in predicting postnatal care utilization in Ethiopia and to identify the key factors involved.

View Article and Find Full Text PDF

Background: Identification of mother-infant pairs predisposed to early cessation of exclusive breastfeeding is important for delivering targeted support. Machine learning techniques enable development of transparent prediction models that enhance clinical applicability. We aimed to develop and validate two models to predict cessation of exclusive breastfeeding within one month among infants born after 35 weeks gestation using machine learning techniques.

View Article and Find Full Text PDF

Heart disease remains a leading cause of mortality and morbidity worldwide, necessitating the development of accurate and reliable predictive models to facilitate early detection and intervention. While state of the art work has focused on various machine learning approaches for predicting heart disease, but they could not able to achieve remarkable accuracy. In response to this need, we applied nine machine learning algorithms XGBoost, logistic regression, decision tree, random forest, k-nearest neighbors (KNN), support vector machine (SVM), gaussian naïve bayes (NB gaussian), adaptive boosting, and linear regression to predict heart disease based on a range of physiological indicators.

View Article and Find Full Text PDF

Background: Postoperative delirium (POD) is a common complication after major surgery and is associated with poor outcomes in older adults. Early identification of patients at high risk of POD can enable targeted prevention efforts. However, existing POD prediction models require inpatient data collected during the hospital stay, which delays predictions and limits scalability.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) is a malignancy caused by the overexpression of the anti-apoptotic protein B-cell lymphoma-2 (BCL-2), making it a critical therapeutic target. This study integrates computational screening, molecular docking, and molecular dynamics to identify and validate novel BCL-2 inhibitors from the ChEMBL database. Starting with 836 BCL-2 inhibitors, we performed ADME and Lipinski's Rule of Five (RO5) filtering, clustering, maximum common substructure (MCS) analysis, and machine learning models (Random Forest, SVM, and ANN), yielding a refined set of 124 compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!