Functional specialization of Aurora kinase homologs during oogenic meiosis in the tunicate .

Front Cell Dev Biol

Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.

Published: December 2023

A single Aurora kinase found in non-vertebrate deuterostomes is assumed to represent the ancestor of vertebrate Auroras A/B/C. However, the tunicate , a member of the sister group to vertebrates, possesses two Aurora kinases (Aurora1 and Aurora2) that are expressed in proliferative cells and reproductive organs. Previously, we have shown that Aurora kinases relocate from organizing centers to meiotic nuclei and were enriched on centromeric regions as meiosis proceeds to metaphase I. Here, we assessed their respective functions in oogenic meiosis using dsRNA interferences. We found that Aurora1 (Aur1) was involved in meiotic spindle organization and chromosome congression, probably through the regulation of microtubule dynamics, whereas Aurora2 (Aur2) was crucial for chromosome condensation and meiotic spindle assembly. kinase assays showed that Aur1 and Aur2 had comparable levels of kinase activities. Using yeast two-hybrid library screening, we identified a few novel interaction proteins for Aur1, including c-Jun-amino-terminal kinase-interacting protein 4, cohesin loader Scc2, and mitochondrial carrier homolog 2, suggesting that Aur1 may have an altered interaction network and participate in the regulation of microtubule motors and cohesin complexes in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10733467PMC
http://dx.doi.org/10.3389/fcell.2023.1323378DOI Listing

Publication Analysis

Top Keywords

aurora kinase
8
oogenic meiosis
8
aurora kinases
8
meiotic spindle
8
regulation microtubule
8
functional specialization
4
aurora
4
specialization aurora
4
kinase
4
kinase homologs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!