Unsupervised machine learning identifies distinct ALS molecular subtypes in post-mortem motor cortex and blood expression data.

Acta Neuropathol Commun

Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK.

Published: December 2023

AI Article Synopsis

  • - The study investigates ALS's clinical and genetic variability using machine learning to analyze 5,000 genes from patients' motor cortex, ultimately identifying three molecular phenotypes related to ALS: synaptic signaling, oxidative stress, and neuroinflammation.
  • - Independent validation was achieved by applying linear discriminant analysis on datasets from various populations, demonstrating a high classification accuracy for each ALS subtype, ranging from 80-90%.
  • - The research confirms that expression signatures effectively differentiate ALS patients from controls and are specific to the motor cortex, indicating their relevance in understanding ALS's biological processes and disease progression.

Article Abstract

Amyotrophic lateral sclerosis (ALS) displays considerable clinical and genetic heterogeneity. Machine learning approaches have previously been utilised for patient stratification in ALS as they can disentangle complex disease landscapes. However, lack of independent validation in different populations and tissue samples have greatly limited their use in clinical and research settings. We overcame these issues by performing hierarchical clustering on the 5000 most variably expressed autosomal genes from motor cortex expression data of people with sporadic ALS from the KCL BrainBank (N = 112). Three molecular phenotypes linked to ALS pathogenesis were identified: synaptic and neuropeptide signalling, oxidative stress and apoptosis, and neuroinflammation. Cluster validation was achieved by applying linear discriminant analysis models to cases from TargetALS US motor cortex (N = 93), as well as Italian (N = 15) and Dutch (N = 397) blood expression datasets, for which there was a high assignment probability (80-90%) for each molecular subtype. The ALS and motor cortex specificity of the expression signatures were tested by mapping KCL BrainBank controls (N = 59), and occipital cortex (N = 45) and cerebellum (N = 123) samples from TargetALS to each cluster, before constructing case-control and motor cortex-region logistic regression classifiers. We found that the signatures were not only able to distinguish people with ALS from controls (AUC 0.88 ± 0.10), but also reflect the motor cortex-based disease process, as there was perfect discrimination between motor cortex and the other brain regions. Cell types known to be involved in the biological processes of each molecular phenotype were found in higher proportions, reinforcing their biological interpretation. Phenotype analysis revealed distinct cluster-related outcomes in both motor cortex datasets, relating to disease onset and progression-related measures. Our results support the hypothesis that different mechanisms underpin ALS pathogenesis in subgroups of patients and demonstrate potential for the development of personalised treatment approaches. Our method is available for the scientific and clinical community at https://alsgeclustering.er.kcl.ac.uk .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734072PMC
http://dx.doi.org/10.1186/s40478-023-01686-8DOI Listing

Publication Analysis

Top Keywords

motor cortex
24
machine learning
8
als
8
motor
8
blood expression
8
expression data
8
kcl brainbank
8
als pathogenesis
8
cortex
7
unsupervised machine
4

Similar Publications

Lateral peri-hand bias affects the horizontal but not the vertical distribution of attention.

Cortex

December 2024

Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Ontario, Canada.

It has been demonstrated that humans exhibit an attention bias towards the lower visual field (e.g., faster target detection for targets appearing below eye level).

View Article and Find Full Text PDF

One of the key hallmarks of Parkinson's disease is the disruption of lipid homeostasis in the brain, which plays a critical role in neuronal membrane integrity and function. Understanding how treadmill training impacts lipid restructuring and its subsequent influence on motor function could provide a basis for developing targeted non-pharmacological interventions for individuals living with early stage of PD. This study aims to investigate the effects of a treadmill training intervention on motor deficits induced by 6-OHDA in rats model of PD.

View Article and Find Full Text PDF

We analysed here the dynamic of the kinesin-like Pavarotti (Pav) during male gametogenesis of wild-type and Sas4 mutant flies. Pav localizes to the equatorial region and the inner central spindle of late anaphase wild-type spermatogonia and displays a strong concentration at the midbody during late telophase. At metaphase of the first meiotic division, Pav shows widespread localization on the equatorial region of the spermatocytes.

View Article and Find Full Text PDF

Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.

View Article and Find Full Text PDF

Introduction: Spasticity is a common complication of stroke, which is related to poor motor recovery and limitations in the performance of activities. Both transcranial magnetic stimulation (TMS) and extracorporeal shockwave therapy (ESWT) are effective treatment methods for poststroke spasticity (PSS). However, there is no existing study exploring the safety and effectiveness of TMS combined with ESWT for PSS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!