Background: Individuals with X chromosomal translocations, variable phenotypes, and a high risk of live birth defects are of interest for scientific study. These characteristics are related to differential breakpoints and various types of chromosomal abnormalities. To investigate the effects of X chromosome translocation on clinical phenotype, a retrospective analysis of clinical data for patients with X chromosome translocation was conducted. Karyotype analysis plus endocrine evaluation was utilized for all the patients. Additional semen analysis and Y chromosome microdeletions were assessed in male patients.
Results: X chromosome translocations were detected in ten cases, including seven females and three males. Infantile uterus and no ovaries were detected in case 1 (FSH: 114 IU/L, LH: 30.90 mIU/mL, E2: < 5.00 pg/ml), and the karyotype was confirmed as 46,X,t(X;22)(q25;q11.2) in case 1. Infantile uterus and small ovaries were both visible in two cases (FSH: 34.80 IU/L, LH: 17.06 mIU/mL, E2: 15.37 pg/ml in case 2; FISH: 6.60 IU/L, LH: 1.69 mIU/mL, E2: 23.70 pg/ml in case 3). The karyotype was detected as 46,X,t(X;8)(q13;q11.2) in case 2 and 46,X,der(X)t(X;5)(q21;q31) in case 3. Normal reproductive hormone levels and fertility abilities were found for cases 4, 6 and 7. The karyotype were detected as 46,X,t(X;5)(p22.3;q22) in case 4 and 46,X,der(X)t(X;Y)(p22.3;q11.2) in cases 6 and 7. These patients exhibited unremarkable clinical manifestations but experienced a history of abnormal chromosomal pregnancy. Normal phenotype and a complex reciprocal translocation as 46,X,t(X;14;4)(q24;q22;q33) were observed in case 5 with a history of spontaneous abortions. In the three male patients, multiple semen analyses confirmed the absence of sperm. Y chromosome microdeletion and hormonal analyses were normal. The karyotypes were detected as 46,Y,t(X;8)(q26;q22), 46,Y,t(X;1)(q26;q23), 46,Y,t(X;3)(q26;p24), respectively.
Conclusions: Our study provides insights into individuals with X chromosome translocations. The clinical phenotypes are variable and unpredictable due to differences in breakpoints and X chromosome inactivation (XCI) patterns. Our results suggest that physicians should focus on the characteristics of the X chromosome translocations and provide personalized clinical evaluations in genetic counselling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10740294 | PMC |
http://dx.doi.org/10.1186/s13039-023-00669-7 | DOI Listing |
Nat Commun
December 2024
ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China.
Thiamine and pyridoxine are essential B vitamins that serve as enzymatic cofactors in energy metabolism, protein and nucleic acid biosynthesis, and neurotransmitter production. In humans, thiamine transporters SLC19A2 and SLC19A3 primarily regulate cellular uptake of both vitamins. Genetic mutations in these transporters, which cause thiamine and pyridoxine deficiency, have been implicated in severe neurometabolic diseases.
View Article and Find Full Text PDFWorld J Surg Oncol
December 2024
Department of Urology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210008, China.
Background: TFE3-translocation renal cell carcinoma (TFE3-tRCC), a distinct subtype of kidney cancer characterized by Xp11.2 translocations, involving TFE3 fusion with various partner genes, lacks effective treatments and prognostic biomarkers for advanced stages. This study aimed to unravel the pathogenic mechanisms and uncover novel therapeutic targets.
View Article and Find Full Text PDFTheor Appl Genet
December 2024
Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Cobbitty, NSW, 2570, Australia.
We analysed the chromosomal structures of two wheat-Thinopyrum intermedium addition lines Z4 and Z5 and resolved the linkage relationship between the leaf rust and stripe rust resistance genes in Z4. Wheat addition lines Z4 and Z5 carrying rust resistance genes from Thinopyrum intermedium (JJJJStSt, 2n = 6x = 42) together with three wheat lines involved in the production of these addition lines were analysed by rust response, 90K SNP genotyping, and molecular cytogenetic analysis. Seedling leaf rust (LR) responses to five diverse pathotypes indicated that the LR resistance gene(s) was located in translocation chromosome T3DS-3AS.
View Article and Find Full Text PDFCancer Genomics Proteomics
December 2024
Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
Background/aim: Myelodysplastic syndromes (MDSs) are clonal bone marrow disorders characterized by ineffective hematopoiesis. They are classified based on morphology and genetic alterations, with SF3B1 variants linked to favorable prognosis and MECOM rearrangements associated with poor outcomes. The combined effects of these alterations remain unclear.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
Center of Reproductive Medicine, Affiliated Children's Hospital of Shanxi & Women Health Center of Shanxi Medicine University, Taiyuan, Shanxi, China.
Introduction: This study investigated the impact of the carrier on transferable blastocyst rate and live birth outcomes in couples with structural chromosomal abnormalities.
Methods: Couples were grouped into reciprocal translocation, Robertsonian translocation, or inversions groups, and clinical data were retrospectively analyzed. Preimplantation genetic testing for chromosomal structural rearrangements (PGT-SR) was conducted, and pregnancy outcomes were compared.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!