Purpose: Soccer substitutes are exposed to periods of limited activity before entering match-play, likely negating benefits of active warm-ups. This study aimed to determine the effects of using a passive heat intervention following a pre-match, and half-time warm-up, on muscle and core temperature in soccer players during ambient (18 °C) and cold (2 °C) conditions.

Methods: On four occasions, 8 male players, completed a pre-match warm-up, followed by 45 min of rest. Following this, participants completed a half-time re-warm-up followed by an additional 45 min of rest, simulating a full match for an unplaying substitute. During periods of rest, participants wore either standardised tracksuit bottoms (CON), or heated trousers (HEAT), over typical soccer attire.

Results: Vastus lateralis temperature declined less in HEAT compared to CON following the 1st half in 2 °C (Δ - 4.39 ± 0.81 vs. - 6.21 ± 1.32 °C, P = 0.002) and 18 °C (Δ - 2.48 ± 0.71 vs. - 3.54 ± 0.88 °C, P = 0.003). These findings were also observed in the 2nd half for the 2 °C (Δ - 4.36 ± 1.03 vs. - 6.26 ± 1.04 °C, P = 0.002) and 18 °C (Δ - 2.85 ± 0.57 vs. - 4.06 ± 1 °C, P = 0.018) conditions. In addition, core temperature declined less in HEAT compared to CON following the 1st (Δ - 0.41 ± 0.25 vs. - 0.84 ± 0.41 °C, P = 0.037) and 2nd (Δ - 0.25 ± 0.33 vs. - 0.64 ± 0.34 °C, P = 0.028) halves of passive rest in 2 °C, with no differences in the 18 °C condition. Perceptual data confirmed that participants were more comfortable in HEAT vs. CON in 2 °C (P < 0.01).

Conclusions: Following active warm-ups, heated trousers attenuate the decline in muscle temperature in ambient and cold environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055710PMC
http://dx.doi.org/10.1007/s00421-023-05381-3DOI Listing

Publication Analysis

Top Keywords

passive heat
8
heat intervention
8
soccer substitutes
8
core temperature
8
45 min rest
8
rest participants
8
temperature declined
8
declined heat
8
heat compared
8
compared con
8

Similar Publications

Evaluating energy consumption patterns in novel foamed ternary alkali-activated masonry blocks.

Sci Rep

January 2025

Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Veszprém, Hungary.

This study endeavors to tackle the energy requirements of the building sector by employing passive design strategies. However, there exists a dearth of comprehension regarding the energy efficiency performance of foamed alkali-activated materials. To bridge this research gap, the study proposes a solution in the form of a thermally proficient wall material crafted from ceramic tile dust (CTD), class C fly ash (FA), and Ground Granulated Blast-Furnace Slag (GGBS), all of which are industrial by-products.

View Article and Find Full Text PDF

Purpose: Exercise-induced heat acclimation can mitigate age-related reductions in heat-loss capacity, though performing repeated bouts of strenuous exercise in the heat may be untenable for many older adults. While short-term passive heat acclimation (e.g.

View Article and Find Full Text PDF

Passive heat therapy is gaining popularity as an intervention to promote cardiovascular, physiological, and to a lesser degree, thermoregulatory, adaptations in patients with cardiovascular disease. Despite this, the efficacy of heat therapy to elicit these adaptations remains unknown. We searched 5 databases for original research, screening 2,913 studies and identifying 18 eligible studies.

View Article and Find Full Text PDF

Nuclear power plant waste heat opens a window of next-generation desalination hybridization: a SOAR-based review.

Water Sci Technol

January 2025

Department of Production Engineering and Mechanical Design, Faculty of Engineering, Tanta University 31527, Egypt; Faculty of Engineering, Pharos University in Alexandria 21648, Alexandria, Egypt.

This review examines the potential for utilizing nuclear power plant (NPP) waste heat in hybrid desalination systems, focusing on Reverse Osmosis-Low-Temperature Evaporation (RO-LTE) driven by renewable energy sources and atomic waste heat. By employing a SOAR (Strengths, Opportunities, Aspirations, Results) analysis, the study evaluates the integration of NPP waste heat into various desalination technologies, emphasizing the environmental benefits and energy efficiency improvements. Fundamental aspirations include advancements in material science and heat exchanger designs, which enhance heat transfer and evaporation processes.

View Article and Find Full Text PDF

The increasing demand for energy in cooling systems due to global warming presents a significant challenge. Conventional air-conditioning methods exacerbate climate change by contributing to heightened carbon emissions. Glass facades, renowned in modern architecture for their versatility and aesthetic appeal, inadvertently trap solar radiation, resulting in heat buildup and the greenhouse effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!