Evidence in SARS-CoV-2 patients have identified that viral infection is accompanied by the expression of inflammatory mediators by both immune and stromal cells within the pulmonary system. However, the immunogenicity of individual SARS-CoV-2 proteins has yet to be evaluated. The SARS-CoV-2 virus consists of 29 proteins, categorized either as nonstructural proteins (NSP's), structural proteins (SP's) or accessory proteins. Here we sought to evaluate the immunogenicity of NSP 1, 7, 8, 9, 10, 12, 14, 16 and the SP's spike protein (full length, S1, S2 and receptor binding domain subunits), nucleocapsid and membrane SARS-CoV-2 proteins against THP-1 and human peripheral blood mononuclear cells (PBMCs). Our results indicate that various SARS-CoV-2 proteins elicit a proinflammatory immune response indicated by increases in cytokines TNF, IL-6 and IL-1β. Our results support that SARS-CoV-2 membrane protein induced a robust increase of TNF, IL-6, IL-1β and IL-10 expression in both THP-1 and human PBMC's. Further evaluation of intranasal membrane protein challenge in male and female BALB/c mice show increases in BALF (bronchalveolar lavage fluid) proinflammatory cytokine expression, elevated cellularity, predominantly neutrophilic, and concomitant peribronchiolar and perivascular lymphomononuclear and neutrophilic inflammation. Our results suggest that individual membrane associated SARS-CoV-2 proteins induce a robust immune response that may contribute to viral induced cytokine release syndrome (CRS) in the lungs of moderate to severe COVID-19 patients. We posit that SARS-CoV-2 membrane challenges in immune-competent mice can serve as an adequate surrogate for the development of novel treatments for SARS-CoV-2 induced pulmonary inflammation, thereby avoiding expensive live virus studies under BSL-3 conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10739983 | PMC |
http://dx.doi.org/10.1038/s41598-023-49077-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!