Considering the extensive resources, flexible structural designability, and abundant active sites, organic electrodes have been considered as the ideal sodium storage materials. However, organic materials generally face the limitations of unstable and dissolved characteristic, leading to a poor cyclic stability. In this work, we proposed a carbon nanotube (CNT) modified polyimide as the anode for sodium-based dual-ion battery (SDIB). The polyimide remains well the structure and morphology of monomer with a stable conjugated structure and high degree of crystallinity, effectively enhancing the electrochemical performance of the SDIBs. Also, the cooperation with CNT particularly improves the ion conductivity of the anode and advances the rate performance. Combined with an ionic liquid electrolyte, the constructed dual-ion battery exhibits excellent rate capability, high specific discharge capacity and stable cycling performance. It delivers a specific discharge capacity of 119.3 mA h g at 0.2 C (1 C=100 mA g) and still has a specific discharge capacity of 82.3 mA h g even after 1000 cycles at 10 C. Besides, the system displays a low self-discharge rate and stable fast charging performance, which is expected to be applied in the large-scale electrochemical energy storage devices and inspire the future development of SDIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202301223DOI Listing

Publication Analysis

Top Keywords

dual-ion battery
12
specific discharge
12
discharge capacity
12
stable
4
stable organic
4
organic polymer
4
polymer anode
4
anode high
4
rate
4
high rate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!