Biallelic loss-of-function mutation of NUP210L, encoding a testis-specific nucleoporin, has been reported in an infertile man whose spermatozoa show uncondensed heads and histone retention. Mice with a homozygous transgene intronic insertion in Nup210l were infertile but spermatozoa had condensed heads. Expression from this insertion allele is undefined, however, and residual NUP210L production could underlie the milder phenotype. To resolve this issue, we have created Nup210l , a null allele of Nup210l, in the mouse. Nup210l homozygotes show uniform mild anomalies of sperm head morphology and decreased motility, but nuclear compaction and histone removal appear unaffected. Thus, our mouse model does not support that NUP210L loss alone blocks spermatid nuclear compaction. Re-analyzing the patient's exome data, we identified a rare, potentially pathogenic, heterozygous variant in nucleoporin gene NUP153 (p.Pro485Leu), and showed that, in mouse and human, NUP210L and NUP153 colocalize at the caudal nuclear pole in elongating spermatids and spermatozoa. Unexpectedly, in round spermatids, NUP210L and NUP153 localisation differs between mouse (nucleoplasm) and human (nuclear periphery). Our data suggest two explanations for the increased phenotypic severity associated with NUP210L loss in human compared to mouse: a genetic variant in human NUP153 (p.Pro485Leu), and inter-species divergence in nuclear pore function in round spermatids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cge.14468 | DOI Listing |
Talanta
December 2024
State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China. Electronic address:
Understanding protein structure is essential for elucidating its function. Cross-linking mass spectrometry (XL-MS) has been widely recognized as a powerful tool for analyzing protein complex structures. However, the effect of cross-linker backbone structure on protein dynamic conformation analysis remains less understood.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.
In eukaryotes, chromatin is compacted within nuclei under the principle of compartmentalization. On top of that, condensin II establishes eukaryotic chromosome territories, while cohesin organizes the vertebrate genome by extruding chromatin loops and forming topologically associating domains (TADs). Thus far, the formation and roles of these chromatin structures in plants remain poorly understood.
View Article and Find Full Text PDFVet Parasitol
December 2024
Postgraduate Program in Animal Science, Franca University (UNIFRAN), Franca, São Paulo, Brazil. Electronic address:
Canine monocytic ehrlichiosis (CME), induced by Ehrlichia canis, is an important infectious disease in dogs, characterized by various clinical signs and consequent immune dysfunction. This study aimed to characterize nuclear morphology, chromatin compaction, histone H3 acetylation, and DNA methylation in lymphocytes from dogs naturally infected with E. canis, compared with healthy controls.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
The Kids Research Institute Australia, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia.
Expression of the compact mitochondrial genome is regulated by nuclear encoded, mitochondrially localized RNA-binding proteins (RBPs). RBPs regulate the lifecycles of mitochondrial RNAs from transcription to degradation by mediating RNA processing, maturation, stability and translation. The Fas-activated serine/threonine kinase (FASTK) family of RBPs has been shown to regulate and fine-tune discrete aspects of mitochondrial gene expression.
View Article and Find Full Text PDFAppl Radiat Isot
December 2024
Institute of Nuclear Techniques of Budapest University of Technology and Economics, Műegyetem Rkp 9, 1111, Budapest, Hungary.
This study presents a compact accelerator-driven neutron source design with a thermal neutron port and an epithermal neutron port for Boron Neutron Capture Therapy (BNCT), based on 10 mA 2.5 MeV protons bombarding on a 100 μm thick disc-shaped Li target with a diameter of 10 cm. The moderator consists of 2 parts, the epithermal neutron moderator and the thermal neutron moderator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!