Tetramethylpyrazine (TMP) has low bioavailability due to its fast metabolism and short half-life, which is not conducive to transdermal treatment of atopic dermatitis (AD). Therefore, in this study, TMP was encapsulated into liposomes (Lip) by film dispersion method, and then the surface of Lip was modified by sodium alginate (ALG) and chitosan (CS). The tetramethylpyrazine-loaded liposomes in sodium alginate chitosan hydrogel called T-Lip-AC hydrogel. In vitro experiments, we found that T-Lip-AC hydrogel not only had the antibacterial effect of CS, but also enhanced the anti-inflammatory and antioxidant effects of TMP. In addition, T-Lip-AC hydrogel could also provide a moist healing environment for AD dry skin and produce better skin permeability, and can also achieve sustained drug release, which is conducive to the treatment of AD. The lesions induced by 1-chloro-2,4-dinitrobenzene were used as the AD lesions model to test the therapeutic effect of the T-Lip-AC hydrogel on AD in vivo. The studies have showed that T-Lip-AC hydrogel could effectively promote wound healing. Therefore, we have developed a T-Lip-AC hydrogel as multifunctional hydrogel drug delivery system, which could become an effective, safe and novel alternative treatment method for treating AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2023.106680DOI Listing

Publication Analysis

Top Keywords

t-lip-ac hydrogel
24
sodium alginate
12
hydrogel
9
tetramethylpyrazine-loaded liposomes
8
alginate chitosan
8
drug delivery
8
delivery system
8
treatment atopic
8
atopic dermatitis
8
t-lip-ac
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!