Prevalence of antibiotic and metal resistance genes in phytoremediated cadmium and zinc contaminated soil assisted by chitosan and Trichoderma harzianum.

Environ Int

School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710000, Shaanxi, PR China; Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, Xi'an 710000, Shaanxi, PR China.

Published: January 2024

AI Article Synopsis

  • High concentrations of heavy metals like cadmium (Cd) and zinc (Zn) in soil pose serious public health risks due to their toxic effects and their role in promoting antibiotic and metal resistance in bacteria.
  • The study explored the use of chitosan (Chi) and Trichoderma harzianum (Tri) to enhance the phytoremediation of Cd and Zn through the plant Amaranthus hypochondriacus L, finding that Chi alone improved phytoremediation, while Tri further enhanced this effect.
  • However, the combination of Chi and Tri also increased the presence of antibiotic resistance genes (ARGs) and maintained metal resistance genes (MRGs) in the soil, highlighting a potential risk for the spread

Article Abstract

Heavy metal in soil have been shown to be toxic with high concentrations and acts as selective pressure on both bacterial metal and antibiotic resistance determinants, posing a serious risk to public health. In cadmium (Cd) and zinc (Zn) contaminated soil, chitosan (Chi) and Trichoderma harzianum (Tri) were applied alone and in combination to assist phytoremediation by Amaranthus hypochondriacus L. Prevalence of antibiotic and metal resistance genes (ARGs and MRGs) in the soil was also evaluated using metagenomic approach. Results indicated that the phytoremediation of Cd and Zn contaminated soil was promoted by Chi, and Tri further reinforced this effect, along with the increased availability of Cd and Zn in soil. Meanwhile, combination of Chi and Tri enhanced the prevalence of ARGs (e.g., multidrug and β-lactam resistance genes) and maintained a high level of MRGs (e.g., chromium, copper) in soil. Soil available Zn and Cd fractions were the main factors contributing to ARGs profile by co-selection, while boosted bacterial hosts (e.g., Mitsuaria, Solirubrobacter, Ramlibacter) contributed to prevalence of most MRGs (e.g., Cd). These findings indicate the potential risk of ARGs and MRGs propagation in phytoremediation of metal contaminated soils assisted by organic and biological agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2023.108394DOI Listing

Publication Analysis

Top Keywords

resistance genes
12
contaminated soil
12
prevalence antibiotic
8
antibiotic metal
8
metal resistance
8
cadmium zinc
8
zinc contaminated
8
soil
8
trichoderma harzianum
8
args mrgs
8

Similar Publications

Genes encoding OXA-48-like carbapenem-hydrolyzing enzymes are often located on plasmids and are abundant among carbapenemase-producing (CPE) worldwide. After a large plasmid-mediated outbreak in 2011, routine screening of patients at risk of CPE carriage on admission and every 7 days during hospitalization was implemented in a large hospital in the Netherlands. The objective of this study was to investigate the dynamics of the hospitals' 2011 outbreak-associated plasmid among CPE collected from 2011 to 2021.

View Article and Find Full Text PDF

The surveillance of mobile genetic elements facilitating the spread of antimicrobial resistance genes has been challenging. Here, we tracked both clonal and plasmid transmission in colistin- and carbapenem-resistant using short- and long-read sequencing technologies. We observed three clonal transmissions, all containing Incompatibility group (Inc) L plasmids and New Delhi metallo-beta-lactamase , although not co-located on the same plasmid.

View Article and Find Full Text PDF

Unlabelled: Persistent viral infections can be an important medical problem, with persistently infected (PI) cells extending viral shedding, maintaining inflammation, and providing potential sources for new viral variants. Given that PI cells can acquire resistance to some innate immune pathways, we tested the hypothesis that complement (C')-mediated lysis of parainfluenza virus 5 (PIV5)-infected cells would differ between acute-infected and PI cells. Biochemical and real-time cell viability assays showed effective C'-mediated lysis of A549 lung cells acutely infected with PIV5, through pathways that depended on C3 and C5, but largely independent of C6.

View Article and Find Full Text PDF

Unlabelled: causes bacterial cold-water disease (BCWD) in salmonids and other fish, resulting in substantial economic losses in aquaculture worldwide. The mechanisms uses to cause disease are poorly understood. Despite considerable effort, most strains of have resisted attempts at genetic manipulation.

View Article and Find Full Text PDF

Microplastics (MPs) in fish can cross the intestinal barrier and are often bioaccumulated in several tissues, causing adverse effects. While the impacts of MPs on fish are well documented, the mechanisms of their cellular internalization remain unclear. A rainbow-trout () intestinal platform, comprising proximal and distal intestinal epithelial cells cultured on an Alvetex scaffold, was exposed to 50 mg/L of MPs (size 1-5 µm) for 2, 4, and 6 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!