Purpose: To examine whether and how carbohydrate response element-binding protein (ChREBP) plays a role in diabetic retinopathy.
Methods: Western blotting was used to detect ChREBP expression and location following high glucose stimulation of Human Retinal Microvascular Endothelial Cells (HRMECs). Flow cytometry, TUNEL staining, and western blotting were used to evaluate apoptosis following ChREBP siRNA silencing. Cell scratch, transwell migration, and tube formation assays were used to determine cell migration and angiogenesis. Diabetic models for wild-type (WT) and ChREBP knockout (ChKO) mice were developed. Retinas of WT and ChKO animals were cultivated in vitro with vascular endothelial growth factor + high glucose to assess neovascular development.
Results: ChREBP gene knockdown inhibited thioredoxin-interacting protein and NOD-like receptor family pyrin domain containing protein 3 expression in HRMECs, which was caused by high glucose stimulation, reduced apoptosis, hindered migration, and tube formation, and repressed AKT/mTOR signaling pathway activation. Compared with WT mice, ChKO mice showed suppressed high glucose-induced alterations in retinal structure, alleviated retinal vascular leakage, and reduced retinal neovascularization.
Conclusions: ChREBP deficiency decreased high glucose-induced apoptosis, migration, and tube formation in HRMECs as well as structural and angiogenic responses in the mouse retina; thus, it is a potential therapeutic target for diabetic retinopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2023.149389 | DOI Listing |
Life (Basel)
January 2025
Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
Angiogenesis plays a critical role in osteosarcoma (OS) growth and metastasis. While nerve growth factor (NGF) is implicated in cancer progression, its role in OS angiogenesis remains unclear. This study explored NGF's effects on angiogenesis and the underlying molecular mechanisms.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China.
Angiogenic T cells (Tang) are crucial in promoting angiogenesis, with the loss of CD28 serving as a marker for highly differentiated and senescent T cells. This study aims to investigate the characteristics and potential roles of CD8CD28 Tang in patients with ANCA-associated vasculitis (AAV). A cohort of AAV patients and matched healthy controls (HCs) were analyzed.
View Article and Find Full Text PDFCell Signal
January 2025
Department of Respiratory and Critical Care Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province 226001, China. Electronic address:
Angiogenesis, a meticulously regulated process essential for both normal development and pathological conditions, necessitates a comprehensive understanding of the endothelial mechanisms governing its progression. Leveraging the zebrafish model and NgAgo knockdown system to identify target genes influencing angiogenesis, our study highlights the significant role of gastric inhibitory polypeptide (GIP) and its receptor (GIPR) in this process. While GIP has been extensively studied for its insulinotropic and glucagonotropic effects, its role in angiogenesis remains unexplored.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
Many cell types are involved in the regulation of cutaneous wound healing in diabetes. Clarifying the mechanism of cell-cell interactions is important for identifying therapeutic targets for diabetic cutaneous ulcers. The function of vascular endothelial cells in the cutaneous microenvironment is critical, and a decrease in their biological function leads directly to refractory wound healing.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
Purpose: Ocular neovascularization is a major cause of blindness. Although fibroblast growth factor-2 (FGF2) has been implicated in the pathophysiology of angiogenesis, the underlying mechanisms remain incompletely understood. The purpose of this study was to investigate the role of FGF2 in retinal neovascularization and elucidate its underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!