A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative phase analysis and molecular structure of human gallstones using synchrotron radiation X-ray diffraction and FTIR spectroscopy. | LitMetric

Quantitative phase analysis and molecular structure of human gallstones using synchrotron radiation X-ray diffraction and FTIR spectroscopy.

Spectrochim Acta A Mol Biomol Spectrosc

Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand.

Published: March 2024

Human gallstones are the most common disorder in the biliary system, affecting up to 20 % of the adult population. The formation of gallstones is primarily due to the supersaturating of cholesterol in bile. In order to comprehend gallstone disease in detail, it is necessary to have accurate information about phase identification and molecular structure. Different types of gallstone samples were collected from the Middle East area after surgical operations including; cholesterol, pigment, and mixed gallstones. To estimate the basic information about the stone formation and the pathophysiology of cholelithiasis as well as to classify the collected human gallstones, attenuated total reflection Fourier transform Infrared spectrometry (ATR-FTIR) was used to analyze the different gallstone structures in the wavenumber range from 400 to 4000 cm. Calcium bilirubinate was specified by the bands at 1662 cm, 1626 cm, and 1572 cm, while cholesterol rings were designated by the bands at 1464, 1438, 1055, and 1022 cm. It can be assumed that all samples consist of mixed gallstones based on the doublets at 1375 cm and 1365 cm. The levels of calcium bilirubin and various minerals varied among the analyzed samples, indicating the heterogeneity in their composition and suggesting potential implications for gallstone formation. Based on the quantitative phase analysis using synchrotron radiation X-ray diffraction (SR-XRD), two phases of anhydrous cholesterol as a major content and one phase of monohydrate cholesterols as trace content represent the main components of most of the gallstones. Additional phases of calcium carbonate in the form of calcite, vaterite, aragonite, and bilirubinate were also quantified. According to the outcomes of the FTIR and the SR-XRD measurements, there exists a statistical correlation between the different types of chemical constituents of the gallstones.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2023.123777DOI Listing

Publication Analysis

Top Keywords

human gallstones
12
quantitative phase
8
phase analysis
8
molecular structure
8
gallstones
8
synchrotron radiation
8
radiation x-ray
8
x-ray diffraction
8
mixed gallstones
8
analysis molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!