Reuse and/or recycling of spent adsorbents is taking a central role in modern thinking and catalyzed carbonization is the way forward. Herein we explore the carbonization of adsorbed acetamiprid, in an inert atmosphere, as a way of recycling and producing nitrogen-rich carbon material for potential use in supercapacitors. Added value material and the reuse of the adsorbent were achieved by carbonization at 700 °C under argon. The formation of a nitrogen-doped carbon layer as an active material on the adsorbent, bonded through a C-Si linkage, has been conclusively verified through elemental composition quantification using XPS and EDX measurements. Two-stage catalytic decomposition and condensation of the adsorbed pesticide is followed by TGA and TPD-MS. Attained carbon-based materials give stable Faradaic capacitance with a slight dependency on the number of adsorbing cycles. Capacitance calculated with respect to the adlayer carbon material reaches values as high as 610 F g. Galvanostatic Charge/Discharge measurement confirmed the stability of explored materials with a slight increase in capacitance over 1000 cycles. The presented results envisage electroactive materials preparation from environmental pollutants, adding value to spent adsorbents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2023.123772 | DOI Listing |
J Phys Chem B
December 2024
Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900, Brazil.
The enthalpy of the oxotransfer reaction of [BuN][WO(mnt)] (where mnt is maleonitriledithiolate) with PPh in an inert atmosphere in an acetonitrile solution was determined by calorimetry. The obtained enthalpy value (-93 ± 5) kJ mol differs from the enthalpy value of the reaction carried out by us earlier under aerobic conditions by (16 ± 9) kJ mol. The obtained results indicate the participation of atmospheric oxygen in the catalytic process.
View Article and Find Full Text PDFSmall
December 2024
Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Despite the ubiquitous use of glasses, their simultaneous susceptibility toward scratch-induced defects and atmospheric hydration deteriorates their mechanical and chemical durability. Here, it is demonstrated that the deposition of a few-layer graphene provides unprecedented wear resistance to silica glass in aqueous conditions. To this extent, nanoscale scratch tests are carried out on graphene-glass surfaces via contact-mode atomic force microscopy with chemically inert and reactive tips.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
December 2024
Air Quality Research Center, University of California, Davis, California, USA.
The IMPROVE program (Interagency Monitoring of PROtected Visual Environments) tracks long-term trends in the composition and optics of regional haze aerosols in the United States. The absorptance of red (633-nm) light is monitored by filter photometry of 24 h-integrated samples of fine particulate matter (PM 2.5).
View Article and Find Full Text PDFHeliyon
December 2024
School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
Aluminium 2XXX series are prominently used in aerospace structural applications, especially Al-Cu-Li Alloys, which are used in the space exploration sector. This work aims to identify a substitute material and an effective manufacturing technique for producing suitable metal matrix composites intended for super lightweight tank structural applications. This work describes the property evaluation of 0.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Physics and Chemistry Emilio Segrè, University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.
Silicon carbide is a wide-bandgap semiconductor useful in a new class of power devices in the emerging area of high-temperature and high-voltage electronics. The diffusion of SiC devices is strictly related to the growth of high-quality substrates and epitaxial layers involving high-temperature treatment processing. In this work, we studied the thermal stability of substrates of 4H-SiC in an inert atmosphere in the range 1600-2000 °C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!