Background: Protocol standardization and optimization for clinical translation of emerging quantitative multiparametric (mp)MRI biomarkers of high-risk prostate cancer requires imaging references that mimic realistic tissue value combinations for bias assessment in derived relaxation and diffusion parameters.
Purpose: This work aimed to develop a novel class of hydrogel-based synthetic materials with simultaneously controlled quantitative relaxation, diffusion, and kurtosis parameters that mimic in vivo prostate value combinations in the same spatial compartment and allow stable assemblies of adjacent structures.
Methods: A set of materials with tunable T, diffusion, and kurtosis were assembled to create quantitative biomimetic (mp)MRI references. T was controlled with variable agarose concentration, monoexponential diffusion by polyvinylpyrrolidone (PVP), and kurtosis by addition of lamellar vesicles. The materials were mechanically stabilized by UV cross-linked polyacrylamide gels (PAG) to allow biomimetic morphologies. The reference T were measured on a 3T scanner using multi-echo CPMG, and diffusion kurtosis-with multi-b DWI.
Results: Agarose concentration controls T values which are nominally independent of PVP or vesicle concentration. For agarose PVP hydrogels, monoexponential diffusion values are a function of PVP concentration and independent of agarose concentration. Compared to free vesicles, for agarose-PAG combined with vesicles, diffusion was predominantly controlled by vesicles and PAG, while kurtosis was affected by agarose and vesicle concentration. Both hydrogel classes achieved image voxel parameter values (T, D, K) for relaxation (T: 65-255 ms), apparent diffusion (D: 0.8-1.7 μm/ms), and kurtosis (K: 0.5-1.25) within the target literature ranges for normal prostate zones and cancer lesions. Relaxation and diffusion parameters remained stable for over 6 months for layered material assemblies.
Conclusion: A stable biomimetic mpMR reference based on hydrogels has been developed with a range of multi-compartment diffusion and relaxation parameter combinations observed in cancerous and healthy prostate tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138133 | PMC |
http://dx.doi.org/10.1002/mp.16908 | DOI Listing |
J Mol Model
January 2025
School of Safety Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
Context: 3,4-Bis(3-nitrofurazan-4-yl) furoxan (DNTF) is a typical low-melting-point, high-energy-density compound that can serve as a cast carrier explosive. Therefore, understanding the safety of DNTF under different casting processes is of great significance for its efficient application. This study employed molecular dynamics simulations to investigate the effects of temperature and pressure on the self-diffusion characteristics and mechanical sensitivity of DNTF.
View Article and Find Full Text PDFJMIR Rehabil Assist Technol
January 2025
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Consiglio Nazionale delle Ricerche, via Alfonso Corti, 12, Milan, 20133, Italy, 39 02 2369 993.
Background: Spinal cord injuries (SCIs) cause debilitating secondary conditions such as severe muscle deterioration, cardiovascular, and metabolic dysfunctions, significantly impacting patients' quality of life. Functional electrical stimulation (FES) combined with cycling exercise (FES-cycling) has shown promise in improving muscle function and health in individuals with SCI.
Objective: This pilot study aimed to investigate the potential role of multiparametric magnetic resonance imaging (MRI) to assess muscle health during and after an FES-cycling rehabilitation program.
J Colloid Interface Sci
January 2025
Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8904, Tokyo, Japan; Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505, Tokyo, Japan. Electronic address:
Phase separation, a fundamental phenomenon in both natural and industrial settings, involves the coarsening of domains over time t to reduce interfacial energy. While well-understood for simple viscous liquid mixtures, the physical laws governing coarsening dynamics in complex fluids, such as colloidal suspensions, remain unclear. Here, we investigate colloidal phase separation through particle-based simulations with and without hydrodynamic interactions (HIs).
View Article and Find Full Text PDFJ Chem Phys
January 2025
The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.
We explore the role of activity in the occurrence of the Mpemba effect within a system of an active colloid diffusing in a potential landscape devoid of metastable minimum. The Mpemba effect is characterized by a phenomenon where a hotter system reaches equilibrium quicker than a colder one when both are rapidly cooled to the same low temperature. While a minimal asymmetry in the potential landscape is crucial for observing this effect in passive colloidal systems, the introduction of activity can either amplify or reduce the threshold of this minimal asymmetry, resulting in the activity-induced and suppressed Mpemba effect.
View Article and Find Full Text PDFCurr Med Imaging
January 2025
Department of Radiology and Medical Imaging, King Saud University Medical City, King Saud University, Riyadh, KSA.
Background: Multiple sclerosis (MS) is one of the most common disabling central nervous system diseases affecting young adults. Magnetic resonance imaging (MRI) is an essential tool for diagnosing and following up multiple sclerosis. Over the years, many MRI techniques have been developed to improve the sensitivity of MS disease detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!