The p53 protein is a suppressor of Atox1 copper chaperon in tumor cells under genotoxic effects.

PLoS One

International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, St. Petersburg, Russia.

Published: December 2023

The p53 protein is crucial for regulating cell survival and apoptosis in response to DNA damage. However, its influence on therapy effectiveness is controversial: when DNA damage is high p53 directs cells toward apoptosis, while under moderate genotoxic stress it saves the cells from death and promote DNA repair. Furthermore, these processes are influenced by the metabolism of transition metals, particularly copper since they serve as cofactors for critical enzymes. The metallochaperone Atox1 is under intensive study in this context because it serves as transcription factor allegedly mediating described effects of copper. Investigating the interaction between p53 and Atox1 could provide insights into tumor cell survival and potential therapeutic applications in oncology. This study explores the relationship between p53 and Atox1 in HCT116 and A549 cell lines with wild type and knockout TP53. The study found an inverse correlation between Atox1 and p53 at the transcriptional and translational levels in response to genotoxic stress. Atox1 expression decreased with increased p53 activity, while cells with inactive p53 had significantly higher levels of Atox1. Suppression of both genes increased apoptosis, while suppression of the ATOX1 gene prevented apoptosis even under the treatment with chemotherapeutic drugs. The findings suggest that Atox1 may act as one of key elements in promotion of cell cycle under DNA-damaging conditions, while p53 works as an antagonist by inhibiting Atox1. Understanding of this relationship could help identify potential targets in cell signaling pathways to enhance the effectiveness of combined antitumor therapy, especially in tumors with mutant or inactive p53.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10735018PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295944PLOS

Publication Analysis

Top Keywords

p53
10
atox1
10
p53 protein
8
cell survival
8
dna damage
8
genotoxic stress
8
p53 atox1
8
inactive p53
8
cell
5
protein suppressor
4

Similar Publications

Background/purpose: Oral leukoplakia (OLK) and oral lichen planus (OLP) represent two common oral potentially malignant disorders. It would be interesting to know scientific output and characteristics of studies on OLK and OLP.

Materials And Methods: This study aimed to investigate and compare scientometric characteristics of articles on OLK and OLP in the Scopus database, with emphasis on the analysis of the keywords that can reflect research directions and topics of concern.

View Article and Find Full Text PDF

Background: Unraveling the pathogenesis of colorectal cancer (CRC) can aid in developing prevention and treatment strategies. Aurora kinase A (AURKA) is a key participant in mitotic control and interacts with its co-activator, the targeting protein for Xklp2 (TPX2) microtubule nucleation factor. AURKA is associated with poor clinical outcomes and high risks of CRC recurrence.

View Article and Find Full Text PDF

Cervical cancer is a significant global health threat, ranking as the fourth most common malignancy among women and resulting in over 300,000 deaths annually. Although screening and vaccination initiatives have led to a decline in incidence rates, treatment options for advanced or recurrent cervical cancer remain inadequate, often proving ineffective and costly. In this context, adenoviral therapy has emerged as a promising strategy to enhance therapeutic outcomes.

View Article and Find Full Text PDF

Objective: This study aims to elucidate the primary signaling communication among papillary craniopharyngioma (PCP) tumor cells.

Methods: Five samples of PCP were utilized for single-cell RNA sequencing. The most relevant ligand and receptor interactions among different cells were calculated using the CellChat package in R software.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is a highly aggressive brain tumor associated with a poor patient prognosis. The survival rate remains low despite standard therapies, highlighting the urgent need for novel treatment strategies. Advanced imaging techniques, particularly magnetic resonance imaging (MRI), are crucial in assessing GBM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!