A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Technical note: Application of an optical hydrophone to ionoacoustic range detection in a tissue-mimicking agar phantom. | LitMetric

Background: Ionoacoustics is a promising approach to reduce the range uncertainty in proton therapy. A miniature-sized optical hydrophone (OH) was used as a measuring device to detect weak ionoacoustic signals with a high signal-to-noise ratio in water. However, further development is necessary to prevent wave distortion because of nearby acoustic impedance discontinuities while detection is conducted on the patient's skin.

Purpose: A prototype of the probe head attached to an OH was fabricated and the required dimensions were experimentally investigated using a 100-MeV proton beam from a fixed-field alternating gradient accelerator and k-Wave simulations. The beam range of the proton in a tissue-mimicking phantom was estimated by measuring γ-waves and spherical ionoacoustic waves with resonant frequency (SPIRE).

Methods: Four sizes of probe heads were fabricated from agar blocks for the OH. Using the prototype, the γ-wave was detected at distal and lateral positions to the Bragg peak on the phantom surface for proton beams delivered at seven positions. For SPIRE, independent measurements were performed at distal on- and off-axis positions. The range positions were estimated by solving the linear equation using the sensitive matrix for the γ-wave and linear fitting of the correlation curve for SPIRE; they were compared with those measured using a film.

Results: The first peak of the γ-wave was undistorted with the 3 × 3 × 3-cm probe head used at the on-axis and 3-cm off-axis positions. The range positions estimated by the γ-wave agreed with the film-based range in the depth direction (the maximum deviation was 0.7 mm), although a 0.6-2.1 mm deviation was observed in the lateral direction. For SPIRE, the deviation was <1 mm for the two measurement positions.

Conclusions: The attachment of a relatively small-sized probe head allowed the OH to measure the beam range on the phantom surface.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.16892DOI Listing

Publication Analysis

Top Keywords

optical hydrophone
8
probe head
8
off-axis positions
8
positions range
8
range positions
8
positions estimated
8
range
6
positions
6
technical note
4
note application
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!