Introduction: Meningoencephalitis in children poses a diagnostic challenge, as etiology remains unknown for most of patients. Viral metagenomics by shotgun sequencing represents a powerful tool for investigating unknown viral infections related to these cases.
Patients And Methods: In a two-year, reference-centre, retrospective study, we investigated the usefulness of viral metagenomics of cerebrospinal fluid (CSF) for the diagnosis of viral infectious meningoencephalitis in forty seven pediatric patients, forty of them previously tested negative with a routine neurologic panel of viral targets that included herpesvirus 1-3 and enterovirus. We enhanced the detection by targeting viral sequences by hybrid capture. Raw sequence data was analysed using three bioinformatics pipelines.
Results: Out of forty remaining children with meningoencephalitis of unknown viral etiology, a significant detection of viral nucleic acid by shotgun sequencing was found in twenty one, which was confirmed in ten of them by specific PCR: seven human endogenous retrovirus K113 (HER K113), one parechovirus 3, one human herpesvirus 5 (HHV5); one enterovirus B (Echovirus 9). The remaining eleven CSF were not confirmed by PCR: three rotavirus, one human herpesvirus 7 (HHV7), one influenza A, one mastadenovirus C, one sindbis virus, one torque teno virus, one human immunodeficiency virus 1 (HIV-1), one human alphaherpesvirus 3 (HHV3), one human alphaherpesvirus 2 (HHV2).
Conclusions: Underutilization of currently available meningitis-encephalitis diagnostic techniques such as BioFire® FilmArray® is the main cause of undiagnosed cases of meningoencephalitis. However, in this study we detected uncommon viruses that should be considered, including virus, rotavirus, sindbis virus, influenza A virus and HHV7. No other viral sequences that could be readily linked to CNS inflammation were detected. Some findings may stem from reagent or sample contamination, as seen with papillomavirus; for others, the clinical relevance of the virus remains uncertain and should be substantiated by further studies, as is the case with endogenous retrovirus K113 virus. Online bioinformatics pipeline CZID represents a valuable tool for analysing shotgun sequencing data in cases of neurological conditions with unknown etiology. Altogether, this study highlights the potential of shotgun sequencing in identifying previously unknown viral neuropathogens and sheds light on the interpretation issues related to its application in clinical microbiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734945 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296036 | PLOS |
BMJ Case Rep
January 2025
Infectious Diseases, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.
We present a case of a woman in her 40s with disseminated enterovirus infection in the setting of maintenance therapy with ocrelizumab for relapsing-remitting multiple sclerosis. The patient originally presented with fever, bilateral lower limb swelling and hypoalbuminaemia. She subsequently developed a productive cough and diarrhoea, and a viral respiratory multiplex panel detected rhino/enterovirus.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Unidade Local de Saúde de Trás-os-Montes e Alto Douro, Chaves, PRT.
Fever is a classic reason for hospital visits, sometimes requiring admission. Its etiologies are numerous, ranging from simple and relatively common conditions to rare and complex pathologies, for which the differential diagnosis can present a true challenge for internists. A 78-year-old healthy female is referred to the emergency department due to marked fatigue for the past four months, with no other symptoms.
View Article and Find Full Text PDFImmunogenetics
January 2025
Laboratorio de Bioconservación y Manejo, Posgrado en Ciencias Químicobiológicas, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Santo Tomás, C.P. 11340, Ciudad de México, Mexico.
Unlike other mammals, bats serve as natural reservoirs for several highly pathogenic viruses without exhibiting symptoms of infection. Recent research has explored the complex mechanisms underlying the balance between bats' antiviral defenses and their pathological responses. However, the evolution of the molecular drivers behind bats' antiviral strategies remains largely unknown.
View Article and Find Full Text PDFAm J Reprod Immunol
January 2025
Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Saxony, Germany.
Problem: Although it is still uncertain whether Severe Acute Respiratory Coronavirus (SARS-CoV-2) placental infection and vertical transmission occur, inflammation during early pregnancy can have devastating consequences for gestation itself and the growing fetus. If and how SARS-CoV-2-specific immune cells negatively affect placenta functionality is still unknown.
Method Of Study: We stimulated peripheral blood mononuclear cells (PBMCs) from women of reproductive age with SARS-CoV-2 peptides and cocultured them with trophoblast spheroids (HTR-8/SVneo and JEG-3) to dissect if SARS-CoV-2-activated immune cells can interfere with trophoblast functionality.
PLoS Pathog
January 2025
Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America.
Compromised male reproductive health, including reduced testosterone and sperm count, is one of the long COVID symptoms in individuals recovering from mild-severe disease. COVID-19 patients display testicular injury in the acute stage and altered serum fertility markers in the recovery phase, however, long-term implications on the testis remain unknown. This study characterized the consequences of SARS-CoV-2 on testis function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!